Paola Cafforio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5717458/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Correlation between targeted RNAseq signature of breast cancer CTCs and onset of bone-only metastases. British Journal of Cancer, 2022, 126, 419-429.	6.4	10
2	Fertility preservation techniques in cervical carcinoma. Medicine (United States), 2022, 101, e29163.	1.0	3
3	Circulating tumor cells from melanoma patients show phenotypic plasticity and metastatic potential in xenograft NOD.CB17 mice. BMC Cancer, 2022, 22, .	2.6	6
4	Liquid Biopsy in Cervical Cancer: Hopes and Pitfalls. Cancers, 2021, 13, 3968.	3.7	9
5	DEAD-Box Helicase 4 (Ddx4)+ Stem Cells Sustain Tumor Progression in Non-Serous Ovarian Cancers. International Journal of Molecular Sciences, 2020, 21, 6096.	4.1	2
6	Breast cancer: an update on treatment-related infertility. Journal of Cancer Research and Clinical Oncology, 2020, 146, 647-657.	2.5	25
7	Dual-procedural separation of CTCs in cutaneous melanoma provides useful information for both molecular diagnosis and prognosis. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592090541.	3.2	10
8	Ddx4+ Oogonial Stem Cells in Postmenopausal Women's Ovaries: A Controversial, Undefined Role. Cells, 2019, 8, 650.	4.1	11
9	Dissection of major cancer gene variants in subsets of circulating tumor cells in advanced breast cancer. Scientific Reports, 2019, 9, 17276.	3.3	16
10	In Vitro Generation of Oocytes from Ovarian Stem Cells (OSCs): In Search of Major Evidence. International Journal of Molecular Sciences, 2019, 20, 6225.	4.1	23
11	In vitro differentiation of human oocyte-like cells from oogonial stem cells: single-cell isolation and molecular characterization. Human Reproduction, 2018, 33, 464-473.	0.9	90
12	Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Therapeutic Advances in Medical Oncology, 2018, 10, 175883591879463.	3.2	317
13	Animal-type melanoma: dog or wolf? A review of the literature and a case report. Expert Reviews in Molecular Medicine, 2018, 20, e5.	3.9	2
14	1,25(OH)2 vitamin D(3) contributes to osteoclast-like trans-differentiation of malignant plasma cells. Experimental Cell Research, 2017, 358, 260-268.	2.6	11
15	Characterization of a Rare Nonpathogenic Sequence Variant (c.1905C>T) of the Dihydropyrimidine Dehydrogenase Gene (DPYD). International Journal of Biological Markers, 2017, 32, 357-360.	1.8	3
16	pIL6-TRAIL-engineered umbilical cord mesenchymal/stromal stem cells are highly cytotoxic for myeloma cells both in vitro and in vivo. Stem Cell Research and Therapy, 2017, 8, 206.	5.5	25
17	Next-generation Sequencing (NGS) Analysis on Single Circulating Tumor Cells (CTCs) with No Need of Whole-genome Amplification (WGA). Cancer Genomics and Proteomics, 2017, 14, 173-179.	2.0	29
18	Cilengitide restrains the osteoclastâ€like bone resorbing activity of myeloma plasma cells. British Journal of Haematology, 2016, 173, 59-69.	2.5	10

PAOLA CAFFORIO

#	Article	IF	CITATIONS
19	Perspective in infertility: the ovarian stem cells. Journal of Ovarian Research, 2015, 8, 55.	3.0	31
20	PTHrP Produced by Myeloma Plasma Cells Regulates Their Survival and Pro-Osteoclast Activity For Bone Disease Progression. Journal of Bone and Mineral Research, 2014, 29, 55-66.	2.8	53
21	Immature dendritic cells in multiple myeloma are prone to osteoclastâ€like differentiation through interleukinâ€17 <scp>A</scp> stimulation. British Journal of Haematology, 2013, 161, 821-831.	2.5	42
22	Constitutive down-regulation of Osterix in osteoblasts from myeloma patients: In vitro effect of Bortezomib and Lenalidomide. Leukemia Research, 2010, 34, 243-249.	0.8	27
23	Functional expression of the calcitonin receptor by human T and B cells. Human Immunology, 2009, 70, 678-685.	2.4	9
24	Expression and function of the calcitonin receptor by myeloma cells in their osteoclast-like activity in vitro. Leukemia Research, 2008, 32, 611-623.	0.8	23
25	Pathogenic anti-DNA idiotype-reactive IgG in intravenous immunoglobulin preparations. Clinical and Experimental Immunology, 2008, 97, 19-25.	2.6	29
26	Negative Regulation of the Osteoblast Function in Multiple Myeloma through the Repressor Gene E4BP4 Activated by Malignant Plasma Cells. Clinical Cancer Research, 2008, 14, 6081-6091.	7.0	32
27	In-vitro functional phenotypes of plasma cell lines from patients with multiple myeloma. Leukemia and Lymphoma, 2006, 47, 1921-1931.	1.3	11
28	Functional osteoclast-like transformation of cultured human myeloma cell lines. British Journal of Haematology, 2005, 130, 926-938.	2.5	39
29	Statins activate the mitochondrial pathway of apoptosis in human lymphoblasts and myeloma cells. Carcinogenesis, 2005, 26, 883-891.	2.8	230
30	Impaired osteoblastogenesis in myeloma bone disease: role of upregulated apoptosis by cytokines and malignant plasma cells. British Journal of Haematology, 2004, 126, 475-486.	2.5	90
31	Osteoclast-like Cell Formation by Circulating Myeloma B Lymphocytes: Role of RANK-L. Leukemia and Lymphoma, 2004, 45, 377-380.	1.3	16
32	Upregulation of osteoblast apoptosis by malignant plasma cells: a role in myeloma bone disease. British Journal of Haematology, 2003, 122, 39-52.	2.5	65
33	Enhancement of T cell apoptosis correlates with increased serum levels of soluble Fas (CD95/Apo-I) in active lupus. Lupus, 2003, 12, 8-14.	1.6	31
34	Anemia in Multiple Myeloma: Role of Deregulated Plasma Cell Apoptosis. Leukemia and Lymphoma, 2002, 43, 1527-1533.	1.3	10
35	Negative regulation of erythroblast maturation by Fas-L+/TRAIL+ highly malignant plasma cells: a major pathogenetic mechanism of anemia in multiple myeloma. Blood, 2002, 99, 1305-1313.	1.4	97
36	Serum elevations of soluble Fas (CD95/apo-I) concur in deregulating T cell apoptosis during active lupus disease. Clinical and Experimental Medicine, 2002, 2, 13-27.	3.6	9

PAOLA CAFFORIO

#	Article	IF	CITATIONS
37	LFA-1 expression on CD4+CD45RO+ peripheral blood T-lymphocytes in RR MS: effects induced by rIFNβ-1a. Journal of the Neurological Sciences, 2001, 186, 65-73.	0.6	5
38	Fas-L up-regulation by highly malignant myeloma plasma cells: role in the pathogenesis of anemia and disease progression. Blood, 2001, 97, 1155-1164.	1.4	51
39	Anti-Fas (CD95/Apo-I) Autoantibodies and Soluble Fas Levels Concur in T Cell Depletion in HIV Type 1 Infection. AIDS Research and Human Retroviruses, 2001, 17, 603-614.	1.1	4
40	Immunogenicity of an Eight Amino Acid Domain Shared by Fas (CD95/Apo-I) and HIV-1 gp120. I. Structural and Antigenic Analysis. Molecular Medicine, 2000, 6, 494-508.	4.4	4
41	VEINCTR-N, an Immunogenic Epitope of Fas (CD95/Apo-I), and Soluble Fas Enhance T-cell Apoptosis in vitro. II. Functional Analysis and Possible Implications in HIV-1 Disease. Molecular Medicine, 2000, 6, 509-526.	4.4	8
42	Th1 polarization of the immune response in Beh�et's disease: A putative pathogenetic role of interleukin-12. Arthritis and Rheumatism, 1999, 42, 1967-1974.	6.7	210
43	Functional Fas-ligand expression on T cells from HIV-1-infected patients is unrelated to CD4+ lymphopenia. International Journal of Clinical and Laboratory Research, 1998, 28, 215-225.	1.0	11
44	CD8+ /CD57+ cells and apoptosis suppress T-cell functions in multiple myeloma. British Journal of Haematology, 1998, 100, 469-477.	2.5	49
45	Fas/Fas ligand (FasL)-deregulated apoptosis and IL-6 insensitivity in highly malignant myeloma cells. Clinical and Experimental Immunology, 1998, 114, 179-188.	2.6	25
46	lgG M-components in active myeloma patients induce a down-regulation of natural killer cell activity. International Journal of Clinical and Laboratory Research, 1997, 27, 48-54.	1.0	32
47	Intravenous immune globulin therapy of lupus nephritis: use of pathogenic anti-DNA-reactive IgG. Clinical and Experimental Immunology, 1996, 104, 91-97.	2.6	37
48	Overexpression of Fas antigen on T cells in advanced HIV-1 infection: differential ligation constantly induces apoptosis. Aids, 1996, 10, 131-141.	2.2	94
49	Cross-linking of Fas By Antibodies to a Peculiar Domain of gp120 V3 Loop Can Enhance T Cell Apoptosis in HIV-1–infected Patients. Journal of Experimental Medicine, 1996, 184, 2287-2300.	8.5	26
50	Molecular Specificities of CD4+ T Cell-Reactive IgM in Human Immunodeficiency Virus (HIV-1) Infection. Clinical Immunology and Immunopathology, 1994, 70, 40-46.	2.0	7