David Chew

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5717107/publications.pdf

Version: 2024-02-01

148 papers	5,658 citations	40 h-index	91712 69 g-index
155	155	155	3779
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	U–Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology, 2014, 363, 185-199.	1.4	441
2	U–Pb and Th–Pb dating of apatite by LA-ICPMS. Chemical Geology, 2011, 280, 200-216.	1.4	332
3	Sr and Nd isotopic compositions of apatite reference materials used in U–Th–Pb geochronology. Chemical Geology, 2014, 385, 35-55.	1.4	234
4	U-Pb geochronologic evidence for the evolution of the Gondwanan margin of the north-central Andes. Bulletin of the Geological Society of America, 2007, 119, 697-711.	1.6	204
5	Geochronology and Thermochronology Using Apatite: Time and Temperature, Lower Crust to Surface. Elements, 2015, 11, 189-194.	0.5	159
6	High temperature (>350°C) thermochronology and mechanisms of Pb loss in apatite. Geochimica Et Cosmochimica Acta, 2014, 127, 39-56.	1.6	154
7	The trace element composition of apatite and its application to detrital provenance studies. Earth-Science Reviews, 2020, 201, 103044.	4.0	135
8	Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb carbonate geochronology: strategies, progress, and limitations. Geochronology, 2020, 2, 33-61.	1.0	129
9	High-resolution LA-ICP-MS trace element mapping of igneous minerals: In search of magma histories. Chemical Geology, 2015, 409, 157-168.	1.4	126
10	Detrital zircon fingerprint of the Proto-Andes: Evidence for a Neoproterozoic active margin?. Precambrian Research, 2008, 167, 186-200.	1.2	123
11	Tectonomagmatic evolution of Western Amazonia: Geochemical characterization and zircon U-Pb geochronologic constraints from the Peruvian Eastern Cordilleran granitoids. Bulletin of the Geological Society of America, 2009, 121, 1298-1324.	1.6	122
12	The early interaction between the Caribbean Plateau and the NW South American Plate. Terra Nova, 2006, 18, 264-269.	0.9	111
13	(LA,Q)-ICPMS trace-element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standards. Chemical Geology, 2016, 435, 35-48.	1.4	104
14	Timing of ophiolite obduction in the Grampian orogen. Bulletin of the Geological Society of America, 2010, 122, 1787-1799.	1.6	97
15	A new approach to laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS) using the flexible map interrogation tool â€~Monocle'. Chemical Geology, 2017, 463, 76-93.	1.4	91
16	The trace element and U-Pb systematics of metamorphic apatite. Chemical Geology, 2018, 483, 218-238.	1.4	91
17	Re–Os geochronology of the Neoproterozoic–Cambrian Dalradian Supergroup of Scotland and Ireland: Implications for Neoproterozoic stratigraphy, glaciations and Re–Os systematics. Precambrian Research, 2011, 185, 202-214.	1.2	88
18	Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis. Earth-Science Reviews, 2020, 202, 103093.	4.0	85

#	Article	IF	Citations
19	The magmatic–hydrothermal transition in rare-element pegmatites from southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbite–tantalite. Geochimica Et Cosmochimica Acta, 2018, 240, 98-130.	1.6	84
20	Grenvillian remnants in the Northern Andes: Rodinian and Phanerozoic paleogeographic perspectives. Journal of South American Earth Sciences, 2010, 29, 92-104.	0.6	78
21	Uâ€Pb Zircon Geochronology and Nd Isotopic Signatures of the Preâ€Mesozoic Metamorphic Basement of the Eastern Peruvian Andes: Growth and Provenance of a Late Neoproterozoic to Carboniferous Accretionary Orogen on the Northwest Margin of Gondwana. Journal of Geology, 2009, 117, 285-305.	0.7	73
22	Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature, 2020, 580, 81-86.	13.7	69
23	An Integrated Apatite Geochronology and Geochemistry Tool for Sedimentary Provenance Analysis. Geochemistry, Geophysics, Geosystems, 2018, 19, 1309-1326.	1.0	62
24	Transition From Collisional to Subductionâ€Related Regimes: An Example From Neogene Panamaâ€Nazcaâ€South America Interactions. Tectonics, 2018, 37, 119-139.	1.3	62
25	The Laurentian Caledonides of Scotland and Ireland. Geological Society Special Publication, 2014, 390, 45-91.	0.8	60
26	New high-precision U–Pb dates from western European Carboniferous tuffs; implications for time scale calibration, the periodicity of late Carboniferous cycles and stratigraphical correlation. Journal of the Geological Society, 2012, 169, 713-721.	0.9	58
27	An Image Mapping Approach to Uâ€Pb LAâ€ICPâ€MS Carbonate Dating and Applications to Direct Dating of Carbonate Sedimentation. Geochemistry, Geophysics, Geosystems, 2018, 19, 4631-4648.	1.0	56
28	Evidence of Late Ediacaran Hyperextension of the Laurentian Iapetan Margin in the Birchy Complex, Baie Verte Peninsula, Northwest Newfoundland: Implications for the Opening of Iapetus, Formation of Peri-Laurentian Microcontinents and Taconic $\hat{a}\in$ Grampian Orogenesis. Geoscience Canada, 2013, 40, 94.	0.3	54
29	Detecting magma-poor orogens in the detrital record. Geology, 2016, 44, 871-874.	2.0	53
30	The tectonothermal evolution and provenance of the Tyrone Central Inlier, Ireland: Grampian imbrication of an outboard Laurentian microcontinent?. Journal of the Geological Society, 2008, 165, 675-685.	0.9	52
31	Tracking exhumation and drainage divide migration of the Western Alps: A test of the apatite U-Pb thermochronometer as a detrital provenance tool. Bulletin of the Geological Society of America, 2016, 128, 1439-1460.	1.6	50
32	Age constraints and geochemistry of the Ordovician Tyrone Igneous Complex, Northern Ireland: implications for the Grampian orogeny. Journal of the Geological Society, 2011, 168, 837-850.	0.9	49
33	LA-ICP-MS imaging in the geosciences and its applications to geochronology. Chemical Geology, 2021, 559, 119917.	1.4	49
34	Grampian orogenesis and the development of blueschist-facies metamorphism in western Ireland. Journal of the Geological Society, 2003, 160, 911-924.	0.9	48
35	Elemental and isotopic behaviour of Zn in Deccan basalt weathering profiles: Chemical weathering from bedrock to laterite and links to Zn deficiency in tropical soils. Science of the Total Environment, 2018, 619-620, 1451-1463.	3.9	47
36	Laurentian crustal recycling in the Ordovician Grampian Orogeny: Nd isotopic evidence from western Ireland. Geological Magazine, 2004, 141, 195-207.	0.9	46

#	Article	IF	CITATIONS
37	U–Pb zircon geochronology of plagiogranites from the Lough Nafooey (= Midland Valley) arc in western Ireland: constraints on the onset of the Grampian orogeny. Journal of the Geological Society, 2007, 164, 747-750.	0.9	46
38	Geochronology of the Tardree Rhyolite Complex, Northern Ireland: Implications for zircon fission track studies, the North Atlantic Igneous Province and the age of the Fish Canyon sanidine standard. Chemical Geology, 2011, 286, 222-228.	1.4	43
39	Magma mixing in the $1100~\text{AD}$ Monta $\tilde{\text{A}}$ ±a Reventada composite lava flow, Tenerife, Canary Islands: interaction between rift zone and central volcano plumbing systems. Contributions To Mineralogy and Petrology, 2011 , 162 , 651 - 669 .	1.2	42
40	LIMA U–Pb ages link lithospheric mantle metasomatism to Karoo magmatism beneath the Kimberley region, South Africa. Earth and Planetary Science Letters, 2014, 401, 132-147.	1.8	41
41	Maximising data and precision from detrital zircon U-Pb analysis by LA-ICPMS: The use of core-rim ages and the single-analysis concordia age. Sedimentary Geology, 2018, 375, 5-13.	1.0	41
42	The Finnmarkian Orogeny revisited: An isotopic investigation in eastern Finnmark, Arctic Norway. Tectonophysics, 2008, 460, 158-177.	0.9	39
43	Chemical Abrasion Applied to LA-ICP-MS U–Pb Zircon Geochronology. Minerals (Basel, Switzerland), 2014, 4, 503-518.	0.8	39
44	Thermochronology and tectonics of the Leeward Antilles: Evolution of the southern Caribbean Plate boundary zone. Tectonics, 2010, 29, n/a-n/a.	1.3	38
45	Neoproterozoic glaciation in the Proto-Andes: Tectonic implications and global correlation. Geology, 2007, 35, 1095.	2.0	37
46	The provenance of Western Irish Namurian Basin sedimentary strata inferred using detrital zircon U–Pb LAâ€ICPâ€MS geochronology. Geological Journal, 2012, 47, 77-98.	0.6	37
47	Proto-Andean evolution of the Eastern Cordillera of Peru. Gondwana Research, 2016, 35, 59-78.	3.0	37
48	The Ocean \hat{a} €" Continent Transition Zones Along the Appalachian \hat{a} €" Caledonian Margin of Laurentia: Examples of Large-Scale Hyperextension During the Opening of the Iapetus Ocean. Geoscience Canada, 2014, 41, 165.	0.3	35
49	Apatite Chlorine Concentration Measurements by <scp>LA</scp> â€ <scp>ICP</scp> â€ <scp>MS</scp> . Geostandards and Geoanalytical Research, 2014, 38, 23-35.	1.7	34
50	Trace Element (Mnâ€Srâ€Yâ€Thâ€REE) and Uâ€Pb Isotope Systematics of Metapelitic Apatite During Progressive Greenschist†to Amphiboliteâ€Facies Barrovian Metamorphism. Geochemistry, Geophysics, Geosystems, 2019, 20, 4103-4129.	1.0	34
51	Structural and stratigraphic relationships across the continuation of the Highland Boundary Fault in western Ireland. Geological Magazine, 2003, 140, 73-85.	0.9	33
52	Rapid tectonic exhumation, detachment faulting and orogenic collapse in the Caledonides of western Ireland. Tectonophysics, 2004, 384, 91-113.	0.9	33
53	Detrital zircon geochronology of the Carboniferous Baixo Alentejo Flysch Group (South Portugal); constraints on the provenance and geodynamic evolution of the South Portuguese Zone. Journal of the Geological Society, 2015, 172, 294-308.	0.9	33
54	Early Mesozoic Magmatism Within the Tibetan Plateau: Implications for the Paleoâ€√ethyan Tectonic Evolution and Continental Amalgamation. Tectonics, 2019, 38, 3505-3543.	1.3	33

#	Article	IF	Citations
55	LA-ICP-MS apatite fission track dating: A practical zeta-based approach. Chemical Geology, 2020, 531, 119302.	1.4	32
56	An Excel spreadsheet for finite strain analysis using the Rf/l† technique. Computers and Geosciences, 2003, 29, 795-799.	2.0	31
57	Tectonic evolution of western Amazonia from the assembly of Rodinia to its break-up. International Geology Review, 2011, 53, 1280-1296.	1.1	31
58	The thermal history of the Karoo Moatize-Minjova Basin, Tete Province, Mozambique: An integrated vitrinite reflectance and apatite fission track thermochronology study. Journal of African Earth Sciences, 2015, 112, 55-72.	0.9	31
59	Heavy mineral analysis and detrital U-Pb ages of the intracontinental Paleo-Yangzte basin: Implications for a transcontinental source-to-sink system during Late Cretaceous time. Bulletin of the Geological Society of America, 2018, 130, 2087-2109.	1.6	31
60	Apatite as an alternative petrochronometer to trace the evolution of magmatic systems containing metamict zircon. Contributions To Mineralogy and Petrology, 2021, 176, 1.	1.2	31
61	Spatial and temporal trends in exhumation of the Eastern Himalaya and syntaxis as determined from a multitechnique detrital thermochronological study of the Bengal Fan. Bulletin of the Geological Society of America, 2019, 131, 1607-1622.	1.6	29
62	Detrital U–Pb zircon dating of lower Ordovician syn-arc-continent collision conglomerates in the Irish Caledonides. Tectonophysics, 2009, 479, 165-174.	0.9	28
63	Ultrafast, >Â50ÂHz <scp>LA</scp> â€ <scp>ICP</scp> â€ <scp>MS</scp> Spot Analysis Applied to U–Pb Dati of Zircon and other Uâ€Bearing Minerals. Geostandards and Geoanalytical Research, 2019, 43, 39-60.	ng 1.7	28
64	Hidden Archaean and Palaeoproterozoic crust in NW Ireland? Evidence from zircon Hf isotopic data from granitoid intrusions. Geological Magazine, 2009, 146, 903-916.	0.9	24
65	Measuring plume-related exhumation of the British Isles in Early Cenozoic times. Earth and Planetary Science Letters, 2016, 456, 1-15.	1.8	24
66	Composition and <scp>Uâ€"Pb</scp> ages of apatite in the <scp>Amba Dongar</scp> carbonatiteâ€"alkaline complex, <scp>India</scp> . Geological Journal, 2019, 54, 3438-3454.	0.6	23
67	New perspectives on the Caledonides of Scandinavia and related areas: introduction. Geological Society Special Publication, 2014, 390, 1-8.	0.8	22
68	Peak to post-peak thermal history of the Saglek Block of Labrador: A multiphase and multi-instrumental approach to geochronology. Chemical Geology, 2018, 484, 210-223.	1.4	21
69	Assessing mineral fertility and bias in sedimentary provenance studies: examples from the Barents Shelf. Geological Society Special Publication, 2020, 484, 255-274.	0.8	21
70	Late Cenozoic drainage reorganization of the paleo-Yangtze river constrained by multi-proxy provenance analysis of the Paleo-lake Xigeda. Bulletin of the Geological Society of America, 2021, 133, 199-211.	1.6	21
71	High-precision U–Pb zircon CA-ID-TIMS dates from western European late Viséan bentonites. Journal of the Geological Society, 2014, 171, 649-658.	0.9	21
72	Apatite U-Pb Thermochronology: A Review. Minerals (Basel, Switzerland), 2021, 11, 1095.	0.8	21

#	Article	IF	CITATIONS
73	Role of sediment in generating contemporaneous, diverse "type―granitoid magmas. Geology, 2022, 50, 427-431.	2.0	20
74	Combined in-situ determination of halogen (F, Cl) content in igneous and detrital apatite by SEM-EDS and LA-Q-ICPMS: A potential new provenance tool. Chemical Geology, 2019, 524, 406-420.	1.4	19
75	All mixed up: Pb isotopic constraints on the transit of sands through the Mississippi-Missouri River drainage basin, North America. Bulletin of the Geological Society of America, 2019, 131, 1501-1518.	1.6	19
76	The geodynamic evolution of the Italian South Alpine basement from the Ediacaran to the Carboniferous: Was the South Alpine terrane part of the peri-Gondwana arc-forming terranes?. Gondwana Research, 2019, 65, 17-30.	3.0	19
77	Magma Ascent along a Major Terrane Boundary: Crustal Contamination and Magma Mixing at the Drumadoon Intrusive Complex, Isle of Arran, Scotland. Journal of Petrology, 2009, 50, 2345-2374.	1.1	18
78	LA-ICP-MS U-Pb dating and REE patterns of apatite from the Tatra Mountains, Poland as a monitor of the regional tectonomagmatic activity. Geochronometria, 2014, 41, 306-314.	0.2	18
79	Rapid high-resolution U–Pb LA-Q-ICPMS age mapping of zircon. Journal of Analytical Atomic Spectrometry, 2017, 32, 262-276.	1.6	18
80	LA-ICP-MS U-Pb apatite dating of Lower Cretaceous rocks from teschenite-picrite association in the Silesian Unit (southern Poland). Geologica Carpathica, 2014, 65, 273-284.	0.2	17
81	Constraining recycled detritus in quartzâ€rich sandstones: Insights from a multiâ€proxy provenance study of the Midâ€Carboniferous, Clare Basin, western Ireland. Basin Research, 2021, 33, 342-363.	1.3	16
82	The effect of intra-crystal uranium zonation on apatite U-Pb thermochronology: A combined ID-TIMS and LA-MC-ICP-MS study. Geochimica Et Cosmochimica Acta, 2019, 251, 15-35.	1.6	15
83	Detrital-zircon geochronology and provenance of the El Oro Metamorphic Complex, Ecuador: Geodynamic implications for the evolution of the western Gondwana margin. Journal of South American Earth Sciences, 2019, 90, 520-539.	0.6	15
84	Constraining the links between the Himalayan belt and the Central Myanmar Basins during the Cenozoic: An integrated multi-proxy detrital geochronology and trace-element geochemistry study. Geoscience Frontiers, 2021, 12, 657-676.	4.3	15
85	Tracing proto-Rheic - Qaidam Ocean vestiges into the Western Tatra Mountains and implications for the Palaeozoic palaeogeography of Central Europe. Gondwana Research, 2021, 91, 188-204.	3.0	15
86	The transition from Pangea amalgamation to fragmentation: Constraints from detrital zircon geochronology on West Iberia paleogeography and sediment sources. Sedimentary Geology, 2018, 375, 172-187.	1.0	14
87	Early mafic magmatism and crustal anatexis on the Isle of Rum: evidence from the Am MÃm intrusion breccia. Geological Magazine, 2009, 146, 368-381.	0.9	13
88	The thermal history of the western Irish onshore. Journal of the Geological Society, 2014, 171, 779-792.	0.9	13
89	The provenance of the Devonian Old Red Sandstone of the Dingle Peninsula, SW Ireland; the earliest record of Laurentian and peri-Gondwanan sediment mixing in Ireland. Journal of the Geological Society, 2018, 175, 411-424.	0.9	13
90	Preâ€orogenic upper crustal softening by lower greenschist facies metamorphic reactions in granites of the central Pyrenees. Journal of Metamorphic Geology, 2020, 38, 183-204.	1.6	13

#	Article	IF	CITATIONS
91	The clastic record of a Wilson Cycle: Evidence from detrital apatite petrochronology of the Grampian-Taconic fore-arc. Earth and Planetary Science Letters, 2020, 552, 116588.	1.8	13
92	Buried Triassic rocks and vertical distribution of ores in the giant Jiaodong gold province (China) revealed by apatite xenocrysts in hydrothermal quartz veins. Ore Geology Reviews, 2022, 140, 104612.	1.1	13
93	The evolution of Eastern Tornquist-Paleoasian Ocean and subsequent continental collisions: A case study from the Western Tatra Mountains, Central Western Carpathians (Poland). Gondwana Research, 2017, 48, 134-152.	3.0	12
94	Tectonics drives rapid exhumation of the western Himalayan syntaxis: Evidence from low-temperature thermochronometry of the Neelum valley region, Pakistan. Lithosphere, 2017, 9, 874-888.	0.6	12
95	Basic volcanism contemporaneous with the Sturtian glacial episode in NE Scotland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2009, 100, 399-415.	0.3	11
96	On the track of a Scottish impact structure: a detrital zircon and apatite provenance study of the Stac Fada Member and wider Stoer Group, NW Scotland. Geological Magazine, 2019, 156, 1863-1876.	0.9	11
97	Apatite Uâ€"Pb dating and geochemistry of the Kyrgyz South Tian Shan (Central Asia): Establishing an apatite fingerprint for provenance studies. Geoscience Frontiers, 2020, 11, 2003-2015.	4.3	11
98	Geochronological and geochemical evidence for multi-stage apatite in the Bafq iron metallogenic belt (Central Iran), with implications for the Chadormalu iron-apatite deposit. Ore Geology Reviews, 2021, 132, 104054.	1.1	11
99	Variscan post-collisional cooling and uplift of the Tatra Mountains crystalline block constrained by integrated zircon, apatite and titanite LA-(MC)-ICP-MS U-Pb dating and rare earth element analyses. Chemical Geology, 2018, 484, 191-209.	1.4	10
100	Microanalysis of Cl, Br and I in apatite, scapolite and silicate glass by LA-ICP-MS. Chemical Geology, 2020, 557, 119854.	1.4	10
101	U–Pb zircon geochronology of the Ediacaran volcano-sedimentary succession of the NE Saghro inlier (Anti-Atlas, Morocco): Chronostratigraphic correlation on the northwestern margin of Gondwana. Gondwana Research, 2020, 87, 263-277.	3.0	10
102	Sediment Generation and Sediment Routing Systems. Earth-Science Reviews, 2020, 207, 103221.	4.0	10
103	Apatite Uâ€Pb Dating with Common Pb Correction Using LAâ€ICPâ€MS/MS. Geostandards and Geoanalytical Research, 2021, 45, 621-642.	1.7	10
104	Neoproterozoic crystalline exotic clasts in the Polish Outer Carpathian flysch: remnants of the Proto-Carpathian continent?. International Journal of Earth Sciences, 2019, 108, 1409-1427.	0.9	9
105	Two-Stage Late Jurassic to Early Cretaceous Hydrothermal Activity in the Sakar Unit of Southeastern Bulgaria. Minerals (Basel, Switzerland), 2020, 10, 266.	0.8	9
106	Apatite fission-track dating by LA-Q-ICP-MS imaging. Chemical Geology, 2021, 560, 119977.	1.4	9
107	Geochemistry and origin of Carboniferous (Mississippian; Viséan) bentonites in the Namur-Dinant Basin, Belgium: evidence for a Variscan volcanic source. Geologica Belgica, 2018, 21, 1-17.	0.9	9
108	Diffusion and fluid interaction in Itrongay pegmatite (Madagascar): Evidence from in situ 40Ar/39Ar dating of gem-quality alkali feldspar and U Pb dating of protogenetic apatite inclusions. Chemical Geology, 2020, 556, 119841.	1.4	8

#	Article	lF	CITATIONS
109	U-Pb zircon-titanite-apatite age constraints on basin development and basin inversion in the Kiruna mining district, Sweden. Precambrian Research, 2022, 372, 106613.	1.2	8
110	Crenulation-slip development in a Caledonian shear zone in NW Ireland: evidence for a multi-stage movement history. Geological Society Special Publication, 2004, 224, 337-352.	0.8	7
111	Lateral versus vertical emplacement in shallow-level intrusions? The Slieve Gullion Ring-complex revisited. Journal of the Geological Society, 2012, 169, 157-171.	0.9	7
112	Geochemistry and apatite U–Pb geochronology of alkaline gabbros from the Nodoushan plutonic complex, Sanandaj–Sirjan Zone, Central Iran: Evidence for Early Palaeozoic rifting of northern Gondwana. Geological Journal, 2019, 54, 1902-1926.	0.6	7
113	Permian-Triassic magmatic evolution of granitoids from the southeastern Central Asian Orogenic Belt: Implications for accretion leading to collision. Science China Earth Sciences, 2021, 64, 788-806.	2.3	7
114	Pulsed Mesozoic exhumation in Northeast Asia: New constraints from zircon U-Pb and apatite U-Pb, fission track and (U-Th)/He analyses in the Zhangguangcai Range, NE China. Tectonophysics, 2021, 818, 229075.	0.9	7
115	Constraining Sinistral Shearing in NW Ireland: A Precise U–Pb Zircon Crystallisation Age for the Ox Mountains Granodiorite. Irish Journal of Earth Sciences, 2005, 23, 55-63.	0.3	7
116	1:2,500 Geological Map of South Achill Island and Achill Beg, Western Ireland. Journal of Maps, 2005, 1, 18-29.	1.0	6
117	Precambrian olistoliths masquerading as sills from Death Valley, California. Journal of the Geological Society, 2018, 175, 377-395.	0.9	6
118	Multi-Tool (LA-ICPMS, EMPA and XRD) Investigation on Heavy Minerals from Selected Holocene Peat-Bog Deposits from the Upper Vistula River Valley, Poland. Minerals (Basel, Switzerland), 2020, 10, 9.	0.8	6
119	Detrital apatite geochemistry and thermochronology from the Oligocene/Miocene Alpine foreland record the early exhumation of the Tauern Window. Basin Research, 2021, 33, 3021-3044.	1.3	6
120	Petrology and dating of the Permian lamprophyres from the Malá Fatra Mts. (Western Carpathians,) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
121	Does slab-window opening cause uplift of the overriding plate? A case study from the Gulf of California. Tectonophysics, 2017, 719-720, 162-175.	0.9	5
122	Introduction to the special issue "Analysis of sediment properties and provenance: Tools for palaeo-environmental reconstruction". Sedimentary Geology, 2018, 375, 1-4.	1.0	5
123	From sink to source: Using offshore thermochronometric data to extract onshore erosion signals in Namibia. Basin Research, 2021, 33, 1580-1602.	1.3	5
124	Spatial variation in provenance signal: identifying complex sand sourcing within a Carboniferous basin using multiproxy provenance analysis. Journal of the Geological Society, 2022, 179, .	0.9	5
125	A NEW EXPOSURE OF A CALDERA FAULT SEGMENT AT THE SLIEVE GULLION IGNEOUS CENTRE: IMPLICATIONS FOR THE EMPLACEMENT OF THE EARLY RING-COMPLEX. Irish Journal of Earth Sciences, 2008, 26, 1-16.	0.3	5
126	Variscan magmatic evolution of the Strandja Zone (Southeast Bulgaria and northwest Turkey) and its relationship to other north Gondwanan margin terranes. Gondwana Research, 2022, 109, 253-273.	3.0	5

#	Article	IF	Citations
127	Central European Variscan Basement in the Outer Carpathians: A Case Study from the Magura Nappe, Outer Western Carpathians, Poland. Minerals (Basel, Switzerland), 2021, 11, 256.	0.8	4
128	Tracing Pre-Mesozoic Tectonic Sutures in the Crystalline Basement of the Protocarpathians: Evidence from the Exotic Blocks from Subsilesian Nappe, Outer Western Carpathians, Poland. Minerals (Basel,) Tj ETQq0 () OogsBT/(Ove¶lock 10 Tf
129	Uranium-lead dates from Livian (middle Viséan) bentonites of the Namur-Dinant Basin, Belgium. Newsletters on Stratigraphy, 2021, 54, 317-334.	0.5	4
130	Two stages of Late Carboniferous to Triassic magmatism in the Strandja Zone of Bulgaria and Turkey. Geological Magazine, 2021, 158, 2151-2164.	0.9	4
131	Uranium–lead phosphate chronostratigraphy: A proof of concept from the mid-Carboniferous boundary. Sedimentary Geology, 2021, 422, 105961.	1.0	4
132	Permian A-type rhyolites of the Drienok Nappe, Inner Western Carpathians, Slovakia: Tectonic setting from in-situ zircon U–Pb LA–ICP–MS dating. Geologica Carpathica, 2022, 73, .	0.2	4
133	Deep- versus shallow-marine sandstone provenance in the mid-Carboniferous Clare Basin, western Ireland. Journal of the Geological Society, 2021, 178, .	0.9	3
134	THE BASEMENT GEOLOGY OF THE PORCUPINE HIGH $\rm \hat{a} \in \textsc{``}$ A KEY TRANSATLANTIC LINK BETWEEN THE CALEDONIDES AND APPALACHIANS. , 2019, , .		3
135	Age and origin of fluorapatite-rich dyke from Baranec Mt. (Tatra Mts., Western Carpathians): a key to understanding of the post-orogenic processes and element mobility. Geologica Carpathica, 2016, 67, 417-432.	0.2	2
136	Wildfires and Monsoons: Cryptic Drivers for Highly Variable Provenance Signals within a Carboniferous Fluvial System. Geosciences (Switzerland), 2022, 12, 20.	1.0	2
137	The Slishwood Division and Its Relationship with the Dalradian Rocks of the Ox Mountains. Springer Geology, 2022, , 73-106.	0.2	2
138	Cretaceous magmatism in the Antarctic Peninsula and its tectonic implications. Journal of the Geological Society, 2023, 180, .	0.9	2
139	Chapter 44 The ChiquerÃo Formation, southern Peru. Geological Society Memoir, 2011, 36, 481-486.	0.9	1
140	Reply to Discussion on †Detrital zircon geochronology of the Carboniferous Baixo Alentejo Flysch Group (South Portugal); constraints on the provenance and geodynamic evolution of the South Portuguese Zone', Journal of the Geological Society, 172, 294–308. Journal of the Geological Society, 2016, 173, 401-403.	0.9	1
141	Permian lamprophyres from the Western Carpathians: a review. Geological Society Special Publication, 0, , SP513-2020-237.	0.8	1
142	Origin of parautochthonous Polish moldavites – a palaeogeographical and petrographical study. Annales Societatis Geologorum Poloniae, 0, , .	0.1	1
143	A twoâ€stage, faultâ€controlled paleofluid system at the southern termination of the Gypsum Valley salt wall, Paradox Basin, Colorado, USA. Basin Research, 2022, 34, 1020-1054.	1.3	1
144	A reassessment of Arundian–Holkerian (Viséan) carbonates in South Cumbria, UK. Proceedings of the Geologists Association, 2022, 133, 227-249.	0.6	1

#	Article	IF	CITATIONS
145	A new approach to palynostratigraphy of the middle–late Famennian Gafo Formation, southern sector of the Pulo do Lobo Domain, SW Iberia (Portugal and Spain). Geological Magazine, 2022, 159, 1454-1470.	0.9	1
146	Collision with Gondwana or with Baltica? Ordovician magmatic arc volcanism in the Marmarosh Massif (Eastern Carpathians, Ukraine). International Journal of Earth Sciences, 2022, 111, 2181-2198.	0.9	1
147	The provenance of Middle Jurassic to Cretaceous sediments in the Irish and Celtic Sea Basins: tectonic and environmental controls on sediment sourcing. Journal of the Geological Society, 2021, 178, .	0.9	O
148	Timescales of magmatism and metamorphism in the Connemara Caledonides: insights from the thermal aureole of the Dawros–Currywongaun–Doughruagh Complex, western Ireland. Geological Magazine, 2021, 158, 2139-2150.	0.9	0