
Rolf Boelens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5717011/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural anomalies in a published NMR-derived structure of IRAK-M. Journal of Molecular Graphics and Modelling, 2022, 111, 108061.	1.3	1
2	Introduction to a special issue of <i>Magnetic Resonance</i> in honour of Robert Kaptein at the occasion of his 80th birthday. Magnetic Resonance, 2021, 2, 465-474.	0.8	0
3	HERMES – A Software Tool for the Prediction and Analysis of Magneticâ€Fieldâ€Induced Residual Dipolar Couplings in Nucleic Acids. ChemPlusChem, 2020, 85, 2177-2185.	1.3	Ο
4	Diubiquitin-Based NMR Analysis: Interactions Between Lys6-Linked diUb and UBA Domain of UBXN1. Frontiers in Chemistry, 2019, 7, 921.	1.8	3
5	Function and Interactions of ERCC1-XPF in DNA Damage Response. Molecules, 2018, 23, 3205.	1.7	59
6	Disordered Peptides Looking for Their Native Environment: Structural Basis of CB1 Endocannabinoid Receptor Binding to Pepcans. Frontiers in Molecular Biosciences, 2018, 5, 100.	1.6	11
7	<scp>iNEXT</scp> : a European facility network to stimulate translational structural biology. FEBS Letters, 2018, 592, 1909-1917.	1.3	4
8	Identification of a diagnostic structural motif reveals a new reaction intermediate and condensation pathway in kraft lignin formation. Chemical Science, 2018, 9, 6348-6360.	3.7	143
9	DNA repair factor APLF acts as a H2A-H2B histone chaperone through binding its DNA interaction surface. Nucleic Acids Research, 2018, 46, 7138-7152.	6.5	36
10	Single-stranded DNA Binding by the Helix-Hairpin-Helix Domain of XPF Protein Contributes to the Substrate Specificity of the ERCC1-XPF Protein Complex. Journal of Biological Chemistry, 2017, 292, 2842-2853.	1.6	13
11	VirB7 and VirB9 Interactions Are Required for the Assembly and Antibacterial Activity of a Type IV Secretion System. Structure, 2016, 24, 1707-1718.	1.6	14
12	A model for the interaction of the G3â€subdomain of <i>Geobacillus stearothermophilus</i> IF2 with the 30S ribosomal subunit. Protein Science, 2016, 25, 1722-1733.	3.1	3
13	Impact of nucleic acid self-alignment in a strong magnetic field on the interpretation of indirect spin–spin interactions. Journal of Biomolecular NMR, 2016, 64, 53-62.	1.6	6
14	Molecular Basis of the Receptor Interactions of Polysialic Acid (polySia), polySia Mimetics, and Sulfated Polysaccharides. ChemMedChem, 2016, 11, 990-1002.	1.6	11
15	New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chemistry, 2016, 18, 2651-2665.	4.6	648
16	Axin cancer mutants form nanoaggregates to rewire the Wnt signaling network. Nature Structural and Molecular Biology, 2016, 23, 324-332.	3.6	31
17	Conformational Plasticity of the POTRA 5 Domain in the Outer Membrane Protein Assembly Factor BamA. Structure, 2015, 23, 1317-1324.	1.6	25
18	Insight into the conformational stability of membrane-embedded BamA using a combined solution and solid-state NMR approach. Journal of Biomolecular NMR, 2015, 61, 321-332.	1.6	19

#	Article	IF	CITATIONS
19	<i>E. coli</i> MG1655 modulates its phospholipid composition through the cell cycle. FEBS Letters, 2015, 589, 2726-2730.	1.3	28
20	Estrogen Receptor Folding Modulates cSrc Kinase SH2 Interaction via a Helical Binding Mode. ACS Chemical Biology, 2015, 10, 2624-2632.	1.6	6
21	The Cerebro-oculo-facio-skeletal Syndrome Point Mutation F231L in the ERCC1 DNA Repair Protein Causes Dissociation of the ERCC1-XPF Complex. Journal of Biological Chemistry, 2015, 290, 20541-20555.	1.6	14
22	Block Copolymer Micelles with an Intermediate Starâ€ / Flowerâ€Like Structure Studied by ¹ H NMR Relaxometry. Macromolecular Chemistry and Physics, 2014, 215, 915-919.	1.1	7
23	Structure, stability, and IgE binding of the peach allergen <scp>P</scp> eamaclein (Pru p 7). Biopolymers, 2014, 102, 416-425.	1.2	43
24	The basic helix–loop–helix region of the transcriptional repressor hairy and enhancer of split 1 is preorganized to bind DNA. Proteins: Structure, Function and Bioinformatics, 2014, 82, 537-545.	1.5	4
25	Structural basis of nucleic acid binding by <i>Nicotiana tabacum</i> glycine-rich RNA-binding protein: implications for its RNA chaperone function. Nucleic Acids Research, 2014, 42, 8705-8718.	6.5	19
26	Proteins Feel More Than They See: Fine-Tuning of Binding Affinity by Properties of the Non-Interacting Surface. Journal of Molecular Biology, 2014, 426, 2632-2652.	2.0	103
27	Mechanism of 3 <scp>D</scp> domain swapping in bovine seminal ribonuclease. FEBS Journal, 2014, 281, 842-850.	2.2	7
28	Hsp90-Tau Complex Reveals Molecular Basis for Specificity in Chaperone Action. Cell, 2014, 156, 963-974.	13.5	269
29	A Naturalâ€Product Switch for a Dynamic Protein Interface. Angewandte Chemie - International Edition, 2014, 53, 6443-6448.	7.2	32
30	Binding Hotspots of BAZ2B Bromodomain: Histone Interaction Revealed by Solution NMR Driven Docking. Biochemistry, 2014, 53, 6706-6716.	1.2	23
31	Absolute MR thermometry using nanocarriers. Contrast Media and Molecular Imaging, 2014, 9, 283-290.	0.4	4
32	Protein Plasticity and Protein-Lipid Interactions of the Beta-Barrel Assembly Machinery. Biophysical Journal, 2014, 106, 47a.	0.2	0
33	Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain. Epigenetics and Chromatin, 2013, 6, 12.	1.8	141
34	A NMR guided approach for CsrA–RNA crystallization. Journal of Biomolecular NMR, 2013, 56, 31-39.	1.6	2
35	Sliding and target location of DNA-binding proteins:an NMR view of the lac repressor system. Journal of Biomolecular NMR, 2013, 56, 41-49.	1.6	10
36	1H, 13C and 15N resonance assignments of wild-type Bacillus subtilis Lipase A and its mutant evolved towards thermostability. Biomolecular NMR Assignments, 2013, 7, 249-252.	0.4	5

#	Article	IF	CITATIONS
37	Influence of the O-phosphorylation of serine, threonine and tyrosine in proteins on the amidic 15N chemical shielding anisotropy tensors. Journal of Biomolecular NMR, 2013, 55, 59-70.	1.6	2
38	Redox-Dependent Control of FOXO/DAF-16 by Transportin-1. Molecular Cell, 2013, 49, 730-742.	4.5	138
39	Structure of the Oâ€Glycosylated Conopeptide CcTx from <i>Conus consors</i> Venom. Chemistry - A European Journal, 2013, 19, 870-879.	1.7	21
40	Dynamic Readers for 5-(Hydroxy)Methylcytosine and Its Oxidized Derivatives. Cell, 2013, 152, 1146-1159.	13.5	888
41	ldentification, structural and pharmacological characterization of Ï,,-CnVA, a conopeptide that selectively interacts with somatostatin sst3 receptor. Biochemical Pharmacology, 2013, 85, 1663-1671.	2.0	34
42	βTrCP interacts with the ubiquitin-dependent endocytosis motif of the GH receptor in an unconventional manner. Biochemical Journal, 2013, 453, 291-301.	1.7	6
43	The Fanconi anemia associated protein FAAP24 uses two substrate specific binding surfaces for DNA recognition. Nucleic Acids Research, 2013, 41, 6739-6749.	6.5	4
44	Some notes on fatal acquired multiple acyl-CoA dehydrogenase deficiency (MADD) in a two-year-old warmblood stallion and European tar spot (Rhytisma acerinum). Veterinary Quarterly, 2013, 33, 47-51.	3.0	3
45	Clycosylation of Conotoxins. Marine Drugs, 2013, 11, 623-642.	2.2	25
46	3D DOSY-TROSY to determine the translational diffusion coefficient of large protein complexes. Protein Engineering, Design and Selection, 2012, 25, 319-319.	1.0	1
47	Structural Dynamics of Bacterial Translation Initiation Factor IF2. Journal of Biological Chemistry, 2012, 287, 10922-10932.	1.6	24
48	WeNMR: Structural Biology on the Grid. Journal of Grid Computing, 2012, 10, 743-767.	2.5	170
49	Binding of Hydrogen-Citrate to Photoactive Yellow Protein Is Affected by the Structural Changes Related to Signaling State Formation. Journal of Physical Chemistry B, 2012, 116, 13172-13182.	1.2	2
50	A novel µâ€conopeptide, CnIIIC, exerts potent and preferential inhibition of Na _V 1.2/1.4 channels and blocks neuronal nicotinic acetylcholine receptors. British Journal of Pharmacology, 2012, 166, 1654-1668.	2.7	55
51	Sulforaphane inhibits pancreatic cancer through disrupting Hsp90–p50Cdc37 complex and direct interactions with amino acids residues of Hsp90. Journal of Nutritional Biochemistry, 2012, 23, 1617-1626.	1.9	49
52	In support of the BMRB. Nature Structural and Molecular Biology, 2012, 19, 854-860.	3.6	6
53	NMR Studies on Structure and Dynamics of the Monomeric Derivative of BS-RNase: New Insights for 3D Domain Swapping. PLoS ONE, 2012, 7, e29076.	1.1	13
54	Biophysical characterization of mutants of <i>Bacillus subtilis</i> lipase evolved for thermostability: Factors contributing to increased activity retention. Protein Science, 2012, 21, 487-497.	3.1	49

#	Article	IF	CITATIONS
55	Molecular Organization of Various Collagen Fragments as Revealed by Atomic Force Microscopy and Diffusionâ€Ordered NMR Spectroscopy. ChemPhysChem, 2012, 13, 3117-3125.	1.0	16
56	The Structure of the XPF-ssDNA Complex Underscores the Distinct Roles of the XPF and ERCC1 Helix- Hairpin-Helix Domains in ss/ds DNA Recognition. Structure, 2012, 20, 667-675.	1.6	28
57	Temperature dependence of the magnetic volume susceptibility of human breast fat tissue: an NMR study. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2012, 25, 33-39.	1.1	24
58	N-terminal domain of human Hsp90 triggers binding to the cochaperone p23. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 580-585.	3.3	109
59	Structural insights into transcription complexes. Journal of Structural Biology, 2011, 175, 135-146.	1.3	14
60	Critical Scaffolding Regions of the Tumor Suppressor Axin1 Are Natively Unfolded. Journal of Molecular Biology, 2011, 405, 773-786.	2.0	58
61	Symmetry and Asymmetry of the RING–RING Dimer of Rad18. Journal of Molecular Biology, 2011, 410, 424-435.	2.0	41
62	Cys-Ph-TAHA: a lanthanide binding tag for RDC and PCS enhanced protein NMR. Journal of Biomolecular NMR, 2011, 51, 329-337.	1.6	43
63	NMR resonance assignments of NarE, a putative ADP-ribosylating toxin from Neisseria meningitidis. Biomolecular NMR Assignments, 2011, 5, 35-38.	0.4	5
64	1H, 13C and 15N assignment of the GNA1946 outer membrane lipoprotein from Neisseria meningitidis. Biomolecular NMR Assignments, 2011, 5, 135-138.	0.4	4
65	Quantitative use of chemical shifts for the modeling of protein complexes. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2662-2670.	1.5	20
66	E3 ligase Rad18 promotes monoubiquitination rather than ubiquitin chain formation by E2 enzyme Rad6. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5590-5595.	3.3	104
67	Structural and Biochemical Characterization of NarE, an Iron-containing ADP-ribosyltransferase from Neisseria meningitidis. Journal of Biological Chemistry, 2011, 286, 14842-14851.	1.6	16
68	3D DOSY-TROSY to determine the translational diffusion coefficient of large protein complexes. Protein Engineering, Design and Selection, 2011, 24, 99-103.	1.0	25
69	Crystal structure and collagen-binding site of immune inhibitory receptor LAIR-1: unexpected implications for collagen binding by platelet receptor GPVI. Blood, 2010, 115, 1364-1373.	0.6	62
70	SAMPLEX: Automatic mapping of perturbed and unperturbed regions of proteins and complexes. BMC Bioinformatics, 2010, 11, 51.	1.2	24
71	<i>parD</i> toxin–antitoxin system of plasmid R1 – basic contributions, biotechnological applications and relationships with closelyâ€related toxin–antitoxin systems. FEBS Journal, 2010, 277, 3097-3117.	2.2	32
72	NMR characterization of foldedness for the production of E3 RING domains. Journal of Structural Biology, 2010, 172, 120-127.	1.3	5

#	Article	IF	CITATIONS
73	Protein interactions regulate ubiquitin and SUMO conjugation. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s2-s2.	0.3	0
74	Sequence-specific Recognition of DNA by the C-terminal Domain of Nucleoid-associated Protein H-NS. Journal of Biological Chemistry, 2009, 284, 30453-30462.	1.6	34
75	A comprehensive framework of E2–RING E3 interactions of the human ubiquitin–proteasome system. Molecular Systems Biology, 2009, 5, 295.	3.2	126
76	A comprehensive framework of E2–RING E3 interactions of the human ubiquitin–proteasome system. Molecular Systems Biology, 2009, 5, .	3.2	21
77	MINOES: A new approach to select a representative ensemble of structures in NMR studies of (partially) unfolded states. Application to Δ25â€PYP. Proteins: Structure, Function and Bioinformatics, 2009, 74, 895-904.	1.5	13
78	A mutagenic analysis of the RNase mechanism of the bacterial Kid toxin by mass spectrometry. FEBS Journal, 2009, 276, 4973-4986.	2.2	13
79	Novel strategies to overcome expression problems encountered with toxic proteins: Application to the production of Lac repressor proteins for NMR studies. Protein Expression and Purification, 2009, 67, 104-112.	0.6	9
80	E2–c-Cbl Recognition Is Necessary but not Sufficient for Ubiquitination Activity. Journal of Molecular Biology, 2009, 385, 507-519.	2.0	37
81	Specificity and Affinity of Lac Repressor for the Auxiliary Operators O2 and O3 Are Explained by the Structures of Their Protein–DNA Complexes. Journal of Molecular Biology, 2009, 390, 478-489.	2.0	46
82	The HhH domain of the human DNA repair protein XPF forms stable homodimers. Proteins: Structure, Function and Bioinformatics, 2008, 70, 1551-1563.	1.5	19
83	High-level expression of biologically active glycoprotein hormones in Pichia pastoris strains—selection of strain GS115, and not X-33, for the production of biologically active N-glycosylated 15N-labeled phCG. Glycoconjugate Journal, 2008, 25, 245-257.	1.4	28
84	Structural Insight into the Recognition of the H3K4me3 Mark by the TFIID Subunit TAF3. Structure, 2008, 16, 1245-1256.	1.6	123
85	The Structural Basis of the Difference in Sensitivity for PNGase F in the De-N-glycosylation of the Native Bovine Pancreatic Ribonucleases B and BS. Biochemistry, 2008, 47, 3435-3446.	1.2	18
86	The Solution Structure of DNA-free Pax-8 Paired Box Domain Accounts for Redox Regulation of Transcriptional Activity in the Pax Protein Family. Journal of Biological Chemistry, 2008, 283, 33321-33328.	1.6	21
87	Structural Dynamics in the Activation of Epac. Journal of Biological Chemistry, 2008, 283, 6501-6508.	1.6	29
88	Structure and Function of Bacterial Kid-Kis and Related Toxin-Antitoxin Systems. Protein and Peptide Letters, 2007, 14, 113-124.	0.4	31
89	Analysis of the XPA and ssDNA-binding surfaces on the central domain of human ERCC1 reveals evidence for subfunctionalization. Nucleic Acids Research, 2007, 35, 5789-5798.	6.5	39
90	Interactions of Kid–Kis toxin–antitoxin complexes with the parD operator-promoter region of plasmid R1 are piloted by the Kis antitoxin and tuned by the stoichiometry of Kid–Kis oligomers. Nucleic Acids Research, 2007, 35, 1737-1749.	6.5	51

#	Article	IF	CITATIONS
91	Modeling Proteinâ^'Protein Complexes Involved in the CytochromecOxidase Copper-Delivery Pathway. Journal of Proteome Research, 2007, 6, 1530-1539.	1.8	27
92	On the Role of Aromatic Side Chains in the Photoactivation of BLUF Domains. Biochemistry, 2007, 46, 7405-7415.	1.2	106
93	Interactions between the toxin Kid of the bacterial parD system and the antitoxins Kis and MazE. Proteins: Structure, Function and Bioinformatics, 2007, 67, 219-231.	1.5	29
94	The Intrinsically Unstructured Domain of PC4 Modulates the Activity of the Structured Core through Inter- and Intramolecular Interactions. Biochemistry, 2006, 45, 5067-5081.	1.2	20
95	Cooperative α-helix unfolding in a protein-DNA complex from hydrogen-deuterium exchange. Protein Science, 2006, 15, 1752-1759.	3.1	1
96	Solution Structure of a Chemosensory Protein from the Desert Locust Schistocerca gregaria,. Biochemistry, 2006, 45, 10606-10613.	1.2	111
97	Information-driven protein-DNA docking using HADDOCK: it is a matter of flexibility. Nucleic Acids Research, 2006, 34, 3317-3325.	6.5	169
98	Model for RNA Binding and the Catalytic Site of the RNase Kid of the Bacterial parD Toxin–Antitoxin System. Journal of Molecular Biology, 2006, 357, 115-126.	2.0	48
99	Light-Induced Flipping of a Conserved Glutamine Sidechain and Its Orientation in the AppA BLUF Domain. Journal of the American Chemical Society, 2006, 128, 15066-15067.	6.6	75
100	Direct Use of Unassigned Resonances in NMR Structure Calculations with Proxy Residues. Journal of the American Chemical Society, 2006, 128, 7566-7571.	6.6	15
101	Comparative NMR study on the impact of point mutations on protein stability ofPseudomonas mendocinalipase. Protein Science, 2006, 15, 1915-1927.	3.1	14
102	Combining NMR Relaxation with Chemical Shift Perturbation Data to Drive Protein–protein Docking. Journal of Biomolecular NMR, 2006, 34, 237-244.	1.6	39
103	The Solution Structure of the AppA BLUF Domain: Insight into the Mechanism of Light-Induced Signaling. ChemBioChem, 2006, 7, 187-193.	1.3	111
104	The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13962-13967.	3.3	155
105	NMR analysis of protein interactions. Current Opinion in Chemical Biology, 2005, 9, 501-508.	2.8	109
106	Solution structure of the C1-subdomain ofBacillus stearothermophilustranslation initiation factor IF2. Protein Science, 2005, 14, 2461-2468.	3.1	23
107	Data-driven docking for the study of biomolecular complexes. FEBS Journal, 2005, 272, 293-312.	2.2	125
108	The Solution Structure of a Transient Photoreceptor Intermediate: Δ25 Photoactive Yellow Protein. Structure, 2005, 13, 953-962.	1.6	71

#	Article	IF	CITATIONS
109	The Structure of the Human ERCC1/XPF Interaction Domains Reveals a Complementary Role for the Two Proteins in Nucleotide Excision Repair. Structure, 2005, 13, 1849-1858.	1.6	116
110	Altered Specificity in DNA Binding by the lac Repressor: A Mutant lac Headpiece that Mimics the gal Repressor. ChemBioChem, 2005, 6, 1628-1637.	1.3	14
111	Describing Partially Unfolded States of Proteins from Sparse NMR Ddata. Journal of Biomolecular NMR, 2005, 33, 175-186.	1.6	17
112	Solution Structure of the C-terminal Domain of TFIIH P44 Subunit Reveals a Novel Type of C4C4 Ring Domain Involved in Protein-Protein Interactions. Journal of Biological Chemistry, 2005, 280, 20785-20792.	1.6	28
113	Structural Properties of the Promiscuous VP16 Activation Domainâ€. Biochemistry, 2005, 44, 827-839.	1.2	63
114	Dynamics and Metal Exchange Properties of C4C4 RING Domains from CNOT4 and the p44 Subunit of TFIIH. Journal of Molecular Biology, 2005, 349, 621-637.	2.0	21
115	Structural Model of the UbcH5B/CNOT4 Complex Revealed by Combining NMR, Mutagenesis, and Docking Approaches. Structure, 2004, 12, 633-644.	1.6	113
116	Side chain dynamics monitored by13C-13C cross-relaxation. Journal of Biomolecular NMR, 2004, 29, 151-166.	1.6	11
117	Toward an Integrated Model of Protein-DNA Recognition as Inferred from NMR Studies on the Lac Repressor System. ChemInform, 2004, 35, no.	0.1	0
118	Toward an Integrated Model of Proteinâ^'DNA Recognition as Inferred from NMR Studies on the Lac Repressor System. Chemical Reviews, 2004, 104, 3567-3586.	23.0	74
119	Structure and Flexibility Adaptation in Nonspecific and Specific Protein-DNA Complexes. Science, 2004, 305, 386-389.	6.0	506
120	An Altered-specificity Ubiquitin-conjugating Enzyme/Ubiquitin–Protein Ligase Pair. Journal of Molecular Biology, 2004, 337, 157-165.	2.0	35
121	Solution Structure of the Ubiquitin-conjugating Enzyme UbcH5B. Journal of Molecular Biology, 2004, 344, 513-526.	2.0	31
122	An alternate conformation of the hyperthermostable HU protein from Thermotoga maritima has unexpectedly high flexibility. FEBS Letters, 2004, 563, 49-54.	1.3	13
123	HADDOCK:Â A Proteinâ^'Protein Docking Approach Based on Biochemical or Biophysical Information. Journal of the American Chemical Society, 2003, 125, 1731-1737.	6.6	2,642
124	Use of very long-distance NOEs in a fully deuterated protein: an approach for rapid protein fold determination. Journal of Magnetic Resonance, 2003, 163, 228-235.	1.2	25
125	X-ray absorption spectroscopic studies of zinc in the N-terminal domain of HIV-2 integrase and model compounds. Journal of Synchrotron Radiation, 2003, 10, 86-95.	1.0	23
126	Lack of Negative Charge in the E46Q Mutant of Photoactive Yellow Protein Prevents Partial Unfolding of the Blue-Shifted Intermediateâ€. Biochemistry, 2003, 42, 14501-14506.	1.2	33

#	Article	IF	CITATIONS
127	Structural and Functional Analysis of the Kid Toxin Protein from E. coli Plasmid R1. Structure, 2002, 10, 1425-1433.	1.6	77
128	Crystallization and preliminary X-ray crystallographic studies on theparD-encoded protein Kid fromEscherichia coliplasmid R1. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 355-358.	2.5	10
129	A residue-specific view of the association and dissociation pathway in protein–DNA recognition. Nature Structural Biology, 2002, 9, 193-7.	9.7	30
130	Identification of a ubiquitin-protein ligase subunit within the CCR4-NOT transcription repressor complex. EMBO Journal, 2002, 21, 355-364.	3.5	186
131	Plasticity in protein-DNA recognition: lac repressor interacts with its natural operator O1 through alternative conformations of its DNA-binding domain. EMBO Journal, 2002, 21, 2866-2876.	3.5	117
132	Rapid protein fold determination using secondary chemical shifts and cross-hydrogen bond 15N-13C' scalar couplings (3hbJNC'). Journal of Biomolecular NMR, 2001, 21, 221-233.	1.6	23
133	The Structure of the C4C4RING Finger of Human NOT4 Reveals Features Distinct from Those of C3HC4 RING Fingers. Journal of Biological Chemistry, 2001, 276, 10185-10190.	1.6	80
134	Refined solution structure of the dimeric N-terminal HHCC domain of HIV-2 integrase. Journal of Biomolecular NMR, 2000, 18, 119-128.	1.6	27
135	Mapping the fMet-tRNAfMet binding site of initiation factor IF2. EMBO Journal, 2000, 19, 5233-5240.	3.5	94
136	Hydration dynamics of the collagen triple helix by NMR11Edited by P. E. Wright. Journal of Molecular Biology, 2000, 300, 1041-1048.	2.0	103
137	Mutations in the glucocorticoid receptor DNA-binding domain mimic an allosteric effect of DNA 1 1Edited by P. E. Wright. Journal of Molecular Biology, 2000, 301, 947-958.	2.0	45
138	Changes in Dynamical Behavior of the Retinoid X Receptor DNA-Binding Domain upon Binding to a 14 Base-Pair DNA Half Siteâ€. Biochemistry, 2000, 39, 8747-8757.	1.2	15
139	Structure and Dynamics of the Tetrameric Mnt Repressor and a Model for its DNA Complex. Journal of Biomolecular Structure and Dynamics, 2000, 17, 113-122.	2.0	2
140	Probing the Nature of the Blue-Shifted Intermediate of Photoactive Yellow Protein in Solution by NMR:  Hydrogenâ^'Deuterium Exchange Data and pH Studies. Biochemistry, 2000, 39, 14392-14399.	1.2	81
141	Effects of the N-Linked Glycans on the 3D Structure of the Free α-Subunit of Human Chorionic Gonadotropin. Biochemistry, 2000, 39, 6012-6021.	1.2	43
142	Identification of the ribosome binding sites of translation initiation factor IF3 by multidimensional heteronuclear NMR spectroscopy. Rna, 1999, 5, 82-92.	1.6	40
143	Identification of the Single-stranded DNA Binding Surface of the Transcriptional Coactivator PC4 by NMR. Journal of Biological Chemistry, 1999, 274, 3693-3699.	1.6	24
144	The role of high-resolution structural studies in the development of commercial enzymes. Current Opinion in Biotechnology, 1999, 10, 391-397.	3.3	8

#	Article	IF	CITATIONS
145	The tetramerization domain of the Mnt repressor consists of two right-handed coiled coils. Nature Structural Biology, 1999, 6, 755-759.	9.7	49
146	Gradient-purged isotope filter experiments for the detection of bound water in proteins. Chemical Physics Letters, 1999, 300, 706-712.	1.2	5
147	NMR structure determination of the tetramerization domain of the Mnt repressor: An asymmetric alpha-helical assembly in slow exchange. Journal of Biomolecular NMR, 1999, 15, 39-53.	1.6	4
148	Water-macromolecule interactions by NMR: a quadrature-free constant-time approach and its application to CI2. Journal of Biomolecular NMR, 1999, 15, 189-201.	1.6	12
149	Band-selective editing of exchange-relay in protein-water NOE experiments. Journal of Biomolecular NMR, 1999, 13, 67-71.	1.6	8
150	Microsecond time scale dynamics in the RXR DNA-binding domain from a combination of spin-echo and off-resonance rotating frame relaxation measurements. Journal of Biomolecular NMR, 1999, 13, 275-288.	1.6	59
151	Hinge-helix formation and DNA bending in various lac repressor–operator complexes. EMBO Journal, 1999, 18, 6472-6480.	3.5	51
152	The solution structure of Lac repressor headpiece 62 complexed to a symmetrical lac operator. Structure, 1999, 7, 1483-S3.	1.6	84
153	Solution structure of the α-subunit of human chorionic gonadotropin. FEBS Journal, 1999, 260, 490-498.	0.2	45
154	Editing of Chemical Exchange-Relayed NOEs in NMR Experiments for the Observation of Protein–Water Interactions. Journal of Magnetic Resonance, 1999, 136, 214-218.	1.2	18
155	NMR Experiments for the Study of Photointermediates: Application to the Photoactive Yellow Protein. Journal of Magnetic Resonance, 1999, 137, 443-447.	1.2	18
156	Refined solution structure of the c-terminal DNA-binding domain of human immunovirus-1 integrase. Proteins: Structure, Function and Bioinformatics, 1999, 36, 556-564.	1.5	83
157	The Solution Structure and Dynamics of an Arc Repressor Mutant Reveal Premelting Conformational Changes Related to DNA Bindingâ€. Biochemistry, 1999, 38, 6035-6042.	1.2	20
158	Millisecond to Microsecond Time Scale Dynamics of the Retinoid X and Retinoic Acid Receptor DNA-Binding Domains and Dimeric Complex Formationâ€. Biochemistry, 1999, 38, 1951-1956.	1.2	33
159	Altered flexibility in the substrate-binding site of related native and engineered high-alkaline Bacillus subtilisins 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999, 292, 111-123.	2.0	256
160	NMR Studies of the 269 Residue Serine Protease PB92 from Bacillus Alcalophilus. , 1999, , 227-246.		0
161	Title is missing!. Journal of Biomolecular NMR, 1998, 11, 265-277.	1.6	24
162	Solution Structure and Backbone Dynamics of the Photoactive Yellow Proteinâ€,‡. Biochemistry, 1998, 37, 12689-12699.	1.2	129

#	Article	IF	CITATIONS
163	Structural and dynamic changes of photoactive yellow protein during its photocycle in solution. Nature Structural Biology, 1998, 5, 568-570.	9.7	155
164	An Off-resonance Rotating Frame Relaxation Experiment for the Investigation of Macromolecular Dynamics Using Adiabatic Rotations. Journal of Magnetic Resonance, 1998, 131, 351-357.	1.2	129
165	Use of graph theory for secondary structure recognition and sequential assignment in heteronuclear (13C, 15N) NMR spectra: Application to HU protein from Bacillus stearothermophilus. , 1998, 39, 691-707.		4
166	Mobilities of the Inner Three Core Residues and the Man(α1→6) Branch of the Glycan at Asn78 of the α-Subunit of Human Chorionic Gonadotropin Are Restricted by the Protein. Biochemistry, 1998, 37, 1933-1940.	1.2	51
167	NMR structure calculation methods for large proteins Application of torsion angle dynamics and distance geometry/simulated annealing to the 269-residue protein serine protease PB92. Molecular Physics, 1998, 95, 1099-1112.	0.8	8
168	Quantitative Measurement of Relaxation Interference Effects between1HNCSA and1Hâ^15N Dipolar Interaction:Â Correlation with Secondary Structure. Journal of the American Chemical Society, 1997, 119, 8985-8990.	6.6	94
169	The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc. Current Biology, 1997, 7, 739-746.	1.8	134
170	The solution structure of serine protease PB92 from Bacillus alcalophilus presents a rigid fold with a flexible substrate-binding site. Structure, 1997, 5, 521-532.	1.6	53
171	Measurement of (15)N- (1)H coupling constants in uniformly (15)N-labeled proteins: Application to the photoactive yellow protein. Journal of Biomolecular NMR, 1997, 10, 301-306.	1.6	38
172	A 15n-filtered 2D 1H TOCSY experiment for assignment of aromatic ring resonances and selective identification of tyrosine ring resonances in proteins: Description and application to Photoactive Yellow Protein. Journal of Biomolecular NMR, 1997, 9, 313-316.	1.6	12
173	Solution Structure of the Immunodominant Region of Protein G of Bovine Respiratory Syncytial Virusâ€,‡. Biochemistry, 1996, 35, 14684-14688.	1.2	38
174	NMR Studies of the Free alpha Subunit of Human Chorionic Gonadotropin. Structural Influences of N-Glycosylation and the beta Subunit on the Conformation of the alpha Subunit. FEBS Journal, 1996, 241, 229-242.	0.2	75
175	Structure and dynamics of the DNA binding protein HU from Bacillus stearothermophilus by NMR spectroscopy. , 1996, 40, 553-559.		27
176	NMR Study of the Interaction of the HU Protein fromBacillus Stearothermophiluswith DNA. Magnetic Resonance in Chemistry, 1996, 34, S81-S86.	1.1	7
177	Simultaneous13C and15N Isotope Editing of Biomolecular Complexes. Application to a MutantlacRepressor Headpiece DNA Complex. Journal of Magnetic Resonance Series B, 1996, 111, 199-203.	1.6	16
178	Improved HSQC experiments for the observation of exchange broadened signals. Journal of Biomolecular NMR, 1996, 8, 223-8.	1.6	62
179	Formation of the hinge helix in the lac represser is induced upon binding to the lac operator. Nature Structural Biology, 1996, 3, 916-919.	9.7	77
180	A Refined NMR Solution Structure of the POU-Specific Domain of the Human OCT-1 Protein. , 1996, , 223-236.		0

#	Article	IF	CITATIONS
181	Hydrogen exchange studies of the Arc repressor: Evidence for a monomeric folding intermediate. Biopolymers, 1995, 35, 217-226.	1.2	22
182	Complete 1H, 13C and 15N NMR assignments and secondary structure of the 269-residue serine protease PB92 from Bacillus alcalophilus. Journal of Biomolecular NMR, 1995, 5, 259-70.	1.6	17
183	Graph-theoretical assignment of secondary structure in multidimensional protein NMR spectra: Application to the lac repressor headpiece. Journal of Biomolecular NMR, 1995, 6, 67-78.	1.6	10
184	A model for the LexA repressor DNA complex. Proteins: Structure, Function and Bioinformatics, 1995, 21, 226-236.	1.5	34
185	NMR structures of phospholipase A2 reveal conformational changes during interfacial activation. Nature Structural and Molecular Biology, 1995, 2, 402-406.	3.6	72
186	The DNA-binding domain of HIV-1 integrase has an SH3-like fold. Nature Structural and Molecular Biology, 1995, 2, 807-810.	3.6	242
187	Solution Structure of the Sequence-specific HMG Box of the Lymphocyte Transcriptional Activator Sox-4. Journal of Biological Chemistry, 1995, 270, 30516-30524.	1.6	65
188	PhoE Signal Peptide Inserts into Micelles as a Dynamic Helix-Break-Helix Structure, Which Is Modulated by the Environment. A Two-Dimensional 1H NMR Study. Biochemistry, 1995, 34, 11617-11624.	1.2	75
189	High-resolution Structure of the Phosphorylated Form of the Histidine-containing Phosphocarrier Protein HPr fromEscherichia coliDetermined by Restrained Molecular Dynamics from NMR-NOE Data. Journal of Molecular Biology, 1995, 246, 180-193.	2.0	78
190	Solution Structure of the HU Protein fromBacillus stearothermophilus. Journal of Molecular Biology, 1995, 254, 692-703.	2.0	103
191	Structure refinement of the glucocorticoid receptor-DNA binding domain from NMR data by relaxation matrix calculations. Journal of Molecular Biology, 1995, 247, 689-700.	2.0	20
192	Solution Structure of Porcine Pancreatic Procolipase as Determined from ¹ H Homonuclear Twoâ€Ðimensional and Threeâ€Ðimensional NMR. FEBS Journal, 1995, 227, 663-672.	0.2	3
193	Solution Structure of Porcine Pancreatic Procolipase as Determined from 1H Homonuclear Two-Dimensional and Three-Dimensional NMR. FEBS Journal, 1995, 227, 663-672.	0.2	20
194	SOLUTION CONFORMATION OF <u>E.</u> <u>COLI</u> <u>LAC</u> REPRESSOR DNA BINDING DOMAIN BY 2D NMR: SEQUENCE LOCATION AND SPATIAL ARRANGEMENT OF THREE α-HELICES. World Scientific Series in 20th Century Chemistry, 1995, , 471-476.	0.0	0
195	LexA repressor and iron uptake regulator from Escherichia coli: new members of the CAP-like DNA binding domain superfamily. Protein Engineering, Design and Selection, 1994, 7, 1449-1453.	1.0	36
196	Time-saving methods for heteronuclear multidimensional NMR of (13C, 15N) doubly labeled proteins. Journal of Biomolecular NMR, 1994, 4, 201-13.	1.6	54
197	1H, 13C and 15N NMR backbone assignments of the 269-residue serine protease PB92 from Bacillus alcalophilus. Journal of Biomolecular NMR, 1994, 4, 123-8.	1.6	29
198	Time- and ensemble-averaged direct NOE restraints. Journal of Biomolecular NMR, 1994, 4, 143-9.	1.6	60

#	Article	IF	CITATIONS
199	Kringle solution structures via NMR: two-dimensional 1H-NMR analysis of horse plasminogen kringle 4. Chemistry and Physics of Lipids, 1994, 67-68, 43-58.	1.5	10
200	Direct nuclear Overhauser effect refinement of crambin from two-dimensional nmr data using a slow-cooling annealing protocol. Biopolymers, 1994, 34, 39-50.	1.2	10
201	Nuclear Magnetic Resonance Solution Structure of the Arc Repressor Using Relaxation Matrix Calculations. Journal of Molecular Biology, 1994, 236, 328-341.	2.0	69
202	Rapid and simple approach for the NMR resonance assignment of the carbohydrate chains of an intact glycoprotein Application of gradient-enhanced natural abundance 1 H-13 C HSQC and HSQC-TOCSY to the α-subunit of human chorionic gonadotropin. FEBS Letters, 1994, 348, 1-6.	1.3	75
203	MONTY: a Monte Carlo approach to protein-DNA recognition. Journal of Molecular Biology, 1994, 235, 318-324.	2.0	49
204	Monte Carlo docking of protein-DNA complexes: incorporation of DNA flexibility and experimental data. Protein Engineering, Design and Selection, 1994, 7, 761-768.	1.0	29
205	Solution Structure of Dimeric Mnt Repressor (1-76). Biochemistry, 1994, 33, 15036-15045.	1.2	67
206	1H, 13C, and 15N resonance assignments and secondary structure analysis of the HU protein from Bacillus stearothermophilus using two- and three-dimensional double- and triple-resonance heteronuclear magnetic resonance spectroscopy. Biochemistry, 1994, 33, 14858-14870.	1.2	49
207	Observation of intersubunit NOEs in a dimeric P22 Mnt repressor mutant by a time-shared [15N, 13C] double half-filter technique. Journal of Biomolecular NMR, 1993, 3, 709.	1.6	34
208	"Ensemble―iterative relaxation matrix approach: A new NMR refinement protocol applied to the solution structure of crambin. Proteins: Structure, Function and Bioinformatics, 1993, 15, 385-400.	1.5	74
209	Solution structure of the POU-specific DNA-binding domain of Oct-1. Nature, 1993, 362, 852-855.	13.7	161
210	NMR studies of the POU-specific DNA-binding domain of Oct-1: Sequential proton and nitrogen-15 assignments and secondary structure. Biochemistry, 1993, 32, 6032-6040.	1.2	14
211	Conformational changes in phospholipase A2 upon binding to micellar interfaces in the absence and presence of competitive inhibitors. A proton and nitrogen-15 NMR study. Biochemistry, 1992, 31, 10024-10030.	1.2	66
212	Rapid acquisition of three-dimensional triple-resonance experiments using pulsed field gradient techniques. Journal of Biomolecular NMR, 1992, 2, 395-400.	1.6	27
213	Gradient-enhanced 3D NOESY-HMQC spectroscopy. Journal of Biomolecular NMR, 1992, 2, 301-305.	1.6	27
214	Porcine pancreatic phospholipase A2: sequence-specific proton and nitrogen-15 NMR assignments and secondary structure. Biochemistry, 1991, 30, 3135-3146.	1.2	29
215	Gradient-enhanced HMQC and HSQC spectroscopy. Applications to 15N-labeled Mnt repressor. Journal of the American Chemical Society, 1991, 113, 9688-9690.	6.6	128
216	Two-dimensional 1H-NMR studies of phospholipase-A2-inhibitor complexes bound to a micellar lipid-water interface. FEBS Journal, 1991, 199, 601-607.	0.2	23

#	Article	IF	CITATIONS
217	The solution structure of a monomeric insulin. A two-dimensional 1H-NMR study of des-(B26-B30)-insulin in combination with distance geometry and restrained molecular dynamics. FEBS Journal, 1991, 202, 447-458.	0.2	25
218	Computer-assisted assignment of 2D1H NMR spectra of proteins: Basic algorithms and application to phoratoxin B. Journal of Biomolecular NMR, 1991, 1, 23-47.	1.6	40
219	Statistical analysis of double NOE transfer pathways in proteins as measured in 3D NOE-NOE spectroscopy. Journal of Biomolecular NMR, 1991, 1, 421-438.	1.6	8
220	Applicability and Limitations of Three-Dimensional NMR Spectroscopy for the Study of Proteins in Solution. , 1991, , 127-150.		2
221	STELLA and CLAIRE: A Seraglio of Programs for Human-Aided Assignment of 2D 1H NMR Spectra of Proteins. , 1991, , 427-437.		0
222	Structure of Arc represser in solution: evidence for a family of β-sheet DMA-binding proteins. Nature, 1990, 346, 586-589.	13.7	180
223	Assignment of the 1H-NMR spectrum of a lac repressor headpiece-operator complex in H2O and identification of NOEs. Consequences for protein-DNA interaction. FEBS Journal, 1990, 194, 629-637.	0.2	28
224	Two-dimensional NMR studies on des-pentapeptide-insulin. Proton resonance assignments and secondary structure analysis. FEBS Journal, 1990, 191, 147-153.	0.2	29
225	A versatile approach toward the partially automatic recognition of cross peaks in 2D 1 H NMR spectra. Journal of Magnetic Resonance, 1990, 88, 601-608.	0.5	16
226	Homonuclear three-dimensional proton NMR spectroscopy of pike parvalbumin. Comparison of short- and medium-range NOEs from 2D and 3D NMR. Journal of the American Chemical Society, 1990, 112, 5024-5030.	6.6	36
227	Two-dimensional NMR study of a protein-DNA complex. Biochemical Pharmacology, 1990, 40, 89-96.	2.0	11
228	Ligand-binding effects on the kringle 4 domain from human plasminogen: a study by laser photo-CIDNP1H-NMR spectroscopy. BBA - Proteins and Proteomics, 1989, 994, 121-137.	2.1	18
229	Toward automatic assignment of protein 1H NMR spectra. Journal of Magnetic Resonance, 1989, 85, 186-197.	0.5	11
230	NMR studies of protein-DNA recognition. The interaction of lac repressor headpiece with operator DNA. , 1989, , 35-59.		0
231	Secondary structure and hydrogen bonding of crambin in solution A two-dimensional NMR study. FEBS Journal, 1988, 171, 307-312.	0.2	15
232	Micellar structure studied by 2Dâ€NMR. Recueil Des Travaux Chimiques Des Pays-Bas, 1988, 107, 105-107.	0.0	5
233	Applications of Twoâ€Đimensional ¹ H NMR Methods to Photoâ€Chemically Induced Dynamic Nuclear Polarisation Spectroscopy. Israel Journal of Chemistry, 1988, 28, 319-327.	1.0	11
234	Conformational changes in the oligonucleotide duples d(GCGTTGCG). d (CGCAACGC) induced by formation of a cis-syn thymine dimer. A two-dimensional NMR study. FEBS Journal, 1987, 162, 37-43.	0.2	82

#	Article	IF	CITATIONS
235	Kringle 4 from human plasminogen: a proton magnetic resonance study via two-dimensional photochemically induced dynamic nuclear polarization spectroscopy. Biochemistry, 1986, 25, 7918-7923.	1.2	12
236	Separation of net polarization and multiplet effect in coupled spin systems by two-dimensional CIDNP. Journal of Magnetic Resonance, 1986, 69, 116-123.	0.5	7
237	Photochemically induced dynamic nuclear polarisation NMR study of the aromatic residues of sea-anemone polypeptide cardiac stimulants. FEBS Journal, 1986, 157, 343-346.	0.2	16
238	Determination of protein structures from nuclear magnetic resonance data using a restrained molecular dynamics approach: The lac repressor DNA binding domain. Biochimie, 1985, 67, 707-715.	1.3	48
239	The use of two-dimensional nuclear-magnetic-resonance spectroscopy and two-dimensional difference spectra in the elucidation of the active center of Megasphaera elsdenii flavodoxin. FEBS Journal, 1984, 141, 323-330.	0.2	19
240	Applications of two-dimensional 1H nuclear magnetic resonance methods in photochemically induced dynamic nuclear polarisation spectroscopy. Faraday Discussions of the Chemical Society, 1984, 78, 245.	2.2	24
241	Spatial arrangement of the three \hat{I}_{\pm} helices in the solution conformation of E. coli lac represser DNA-binding domain. FEBS Letters, 1984, 174, 243-247.	1.3	54
242	The cytochrome c oxidase-azide-nitric oxide complex as a model for the oxygen-binding site. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 765, 196-209.	0.5	27
243	An EPR study of the photodissociation reactions of oxidised cytochrome c oxidase-nitric oxide complexes. Biochimica Et Biophysica Acta - Bioenergetics, 1983, 724, 176-183.	0.5	42