
Elise AasebÃ,

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5716966/publications.pdf Version: 2024-02-01

FLICE AACERÃ

#	Article	IF	CITATIONS
1	The Constitutive Extracellular Protein Release by Acute Myeloid Leukemia Cells—A Proteomic Study of Patient Heterogeneity and Its Modulation by Mesenchymal Stromal Cells. Cancers, 2021, 13, 1509.	1.7	11
2	Proteomic Studies of Primary Acute Myeloid Leukemia Cells Derived from Patients Before and during Disease-Stabilizing Treatment Based on All-Trans Retinoic Acid and Valproic Acid. Cancers, 2021, 13, 2143.	1.7	6
3	Proteomic Comparison of Bone Marrow Derived Osteoblasts and Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2021, 22, 5665.	1.8	15
4	Effects of the Autophagy-Inhibiting Agent Chloroquine on Acute Myeloid Leukemia Cells; Characterization of Patient Heterogeneity. Journal of Personalized Medicine, 2021, 11, 779.	1.1	11
5	Proteomic Characterization of Spontaneous Stress-Induced In Vitro Apoptosis of Human Acute Myeloid Leukemia Cells; Focus on Patient Heterogeneity and Endoplasmic Reticulum Stress. Hemato, 2021, 2, 607-627.	0.2	3
6	The Extracellular Bone Marrow Microenvironment—A Proteomic Comparison of Constitutive Protein Release by In Vitro Cultured Osteoblasts and Mesenchymal Stem Cells. Cancers, 2021, 13, 62.	1.7	16
7	Patient Heterogeneity in Acute Myeloid Leukemia: Leukemic Cell Communication by Release of Soluble Mediators and Its Effects on Mesenchymal Stem Cells. Diseases (Basel, Switzerland), 2021, 9, 74.	1.0	4
8	Targeting Cellular Metabolism in Acute Myeloid Leukemia and the Role of Patient Heterogeneity. Cells, 2020, 9, 1155.	1.8	25
9	The Progression of Acute Myeloid Leukemia from First Diagnosis to Chemoresistant Relapse: A Comparison of Proteomic and Phosphoproteomic Profiles. Cancers, 2020, 12, 1466.	1.7	33
10	Proteome and Phosphoproteome Changes Associated with Prognosis in Acute Myeloid Leukemia. Cancers, 2020, 12, 709.	1.7	33
11	Biological characteristics of aging in human acute myeloid leukemia cells: the possible importance of aldehyde dehydrogenase, the cytoskeleton and altered transcriptional regulation. Aging, 2020, 12, 24734-24777.	1.4	13
12	High Constitutive Cytokine Release by Primary Human Acute Myeloid Leukemia Cells Is Associated with a Specific Intercellular Communication Phenotype. Journal of Clinical Medicine, 2019, 8, 970.	1.0	26
13	Proteomic Profiling of Primary Human Acute Myeloid Leukemia Cells Does Not Reflect Their Constitutive Release of Soluble Mediators. Proteomes, 2019, 7, 1.	1.7	11
14	The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome. Cancers, 2019, 11, 73.	1.7	18
15	Effects of insulin and pathway inhibitors on the PI3K-Akt-mTOR phosphorylation profile in acute myeloid leukemia cells. Signal Transduction and Targeted Therapy, 2019, 4, 20.	7.1	46
16	An Overview on G Protein-coupled Receptor-induced Signal Transduction in Acute Myeloid Leukemia. Current Medicinal Chemistry, 2019, 26, 5293-5316.	1.2	5
17	Vacuolar ATPase as a possible therapeutic target in human acute myeloid leukemia. Expert Review of Hematology, 2018, 11, 13-24.	1.0	9
18	Phosphoprotein DIGE profiles reflect blast differentiation, cytogenetic risk stratification, FLT3/NPM1 mutations and therapy response in acute myeloid leukaemia. Journal of Proteomics, 2018, 173, 32-41.	1.2	11

Elise AasebÃ,

#	Article	IF	CITATIONS
19	Preservation Method and Phosphate Buffered Saline Washing Affect the Acute Myeloid Leukemia Proteome. International Journal of Molecular Sciences, 2018, 19, 296.	1.8	3
20	Two acute myeloid leukemia patient subsets are identified based on the constitutive PI3K-Akt-mTOR signaling of their leukemic cells; a functional, proteomic, and transcriptomic comparison. Expert Opinion on Therapeutic Targets, 2018, 22, 639-653.	1.5	14
21	Rethinking the role of osteopontin in human acute myeloid leukemia. Leukemia and Lymphoma, 2017, 58, 1494-1497.	0.6	6
22	Therapeutic targeting of leukemic stem cells in acute myeloid leukemia – the biological background for possible strategies. Expert Opinion on Drug Discovery, 2017, 12, 1053-1065.	2.5	32
23	Selecting Sample Preparation Workflows for Mass Spectrometry-Based Proteomic and Phosphoproteomic Analysis of Patient Samples with Acute Myeloid Leukemia. Proteomes, 2016, 4, 24.	1.7	19
24	How should quality of life assessment be integrated in the evaluation of patients with acute myeloid leukemia?. Expert Review of Quality of Life in Cancer Care, 2016, 1, 373-387.	0.6	3
25	Freezing effects on the acute myeloid leukemia cell proteome and phosphoproteome revealed using optimal quantitative workflows. Journal of Proteomics, 2016, 145, 214-225.	1.2	35
26	Reliable FASP-based procedures for optimal quantitative proteomic and phosphoproteomic analysis on samples from acute myeloid leukemia patients. Biological Procedures Online, 2016, 18, 13.	1.4	48
27	Clobal Cell Proteome Profiling, Phospho-signaling and Quantitative Proteomics for Identification of New Biomarkers in Acute Myeloid Leukemia Patients. Current Pharmaceutical Biotechnology, 2015, 17, 52-70.	0.9	27
28	Performance of superâ€6ILAC based quantitative proteomics for comparison of different acute myeloid leukemia (AML) cell lines. Proteomics, 2014, 14, 1971-1976.	1.3	32
29	Effects of Blood Contamination and the Rostro-Caudal Gradient on the Human Cerebrospinal Fluid Proteome. PLoS ONE, 2014, 9, e90429.	1.1	54