
Jitka Zurmanova RNDr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5716925/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The cardioprotective effect persisting during recovery from cold acclimation is mediated by the β2-adrenoceptor pathway and Akt activation. Journal of Applied Physiology, 2021, 130, 746-755.	2.5	3
2	Omacor Protects Normotensive and Hypertensive Rats Exposed to Continuous Light from Increased Risk to Malignant Cardiac Arrhythmias. Marine Drugs, 2021, 19, 659.	4.6	6
3	Cardiac Cx43 and ECM Responses to Altered Thyroid Status Are Blunted in Spontaneously Hypertensive versus Normotensive Rats. International Journal of Molecular Sciences, 2019, 20, 3758.	4.1	10
4	Cardioprotective Regimen of Adaptation to Chronic Hypoxia Diversely Alters Myocardial Gene Expression in SHR and SHR-mtBN Conplastic Rat Strains. Frontiers in Endocrinology, 2019, 9, 809.	3.5	7
5	β-Adrenergic signaling, monoamine oxidase A and antioxidant defence in the myocardium of SHR and SHR-mtBN conplastic rat strains: the effect of chronic hypoxia. Journal of Physiological Sciences, 2018, 68, 441-454.	2.1	5
6	Changes in the activity of some metabolic enzymes in the heart of SHR rat incurred by transgenic expression of CD36. Journal of Physiology and Biochemistry, 2018, 74, 479-489.	3.0	3
7	Mitochondrial genome modulates myocardial Akt/Clut/HK salvage pathway in spontaneously hypertensive rats adapted to chronic hypoxia. Physiological Genomics, 2018, 50, 532-541.	2.3	8
8	Anti-arrhythmic Cardiac Phenotype Elicited by Chronic Intermittent Hypoxia Is Associated With Alterations in Connexin-43 Expression, Phosphorylation, and Distribution. Frontiers in Endocrinology, 2018, 9, 789.	3.5	18
9	Antioxidant tempol suppresses heart cytosolic phospholipase A ₂ α stimulated by chronic intermittent hypoxia. Canadian Journal of Physiology and Pharmacology, 2017, 95, 920-927.	1.4	2
10	Selective replacement of mitochondrial DNA increases the cardioprotective effect of chronic continuous hypoxia in spontaneously hypertensive rats. Clinical Science, 2017, 131, 865-881.	4.3	19
11	Adaptation to chronic continuous hypoxia potentiates Akt/HK2 anti-apoptotic pathway during brief myocardial ischemia/reperfusion insult. Molecular and Cellular Biochemistry, 2017, 432, 99-108.	3.1	14
12	Altered thyroid status affects myocardial expression of connexin-43 and susceptibility of rat heart to malignant arrhythmias that can be partially normalized by red palm oil intake. Histochemistry and Cell Biology, 2017, 147, 63-73.	1.7	20
13	Cardioprotective adaptation to chronic hypoxia stimulates the ROS-dependent/cytosolic phospholipase A 2 a pathway in rat heart. Journal of Molecular and Cellular Cardiology, 2017, 112, 157.	1.9	Ο
14	β-Adrenergic signaling in rat heart is similarly affected by continuous and intermittent normobaric hypoxia. General Physiology and Biophysics, 2016, 35, 165-173.	0.9	7
15	Chronic intermittent hypoxia affects the cytosolic phospholipase A2α/cyclooxygenase 2 pathway via β2-adrenoceptor-mediated ERK/p38 stimulation. Molecular and Cellular Biochemistry, 2016, 423, 151-163.	3.1	18
16	Circadian Dexras1 in rats: Development, location and responsiveness to light. Chronobiology International, 2016, 33, 141-150.	2.0	6
17	Cardioprotective and nonprotective regimens of chronic hypoxia diversely affect the myocardial antioxidant systems. Physiological Genomics, 2015, 47, 612-620.	2.3	18
18	Cardioprotective adaptation of rats to intermittent hypobaric hypoxia is accompanied by the increased association of hexokinase with mitochondria. Journal of Applied Physiology, 2015, 119, 1487-1493.	2.5	20

#	Article	IF	CITATIONS
19	Involvement of PKCε in Cardioprotection Induced by Adaptation to Chronic Continuous Hypoxia. Physiological Research, 2015, 64, 191-201.	0.9	15
20	Chronic Hypoxia Enhances Expression and Activity of Mitochondrial Creatine Kinase and Hexokinase in the Rat Ventricular Myocardium. Cellular Physiology and Biochemistry, 2014, 33, 310-320.	1.6	27
21	Transgenic rescue of defective Cd36 enhances myocardial adenylyl cyclase signaling in spontaneously hypertensive rats. Pflugers Archiv European Journal of Physiology, 2013, 465, 1477-1486.	2.8	9
22	Right-To-Left Ventricular Differences in the Expression of Mitochondrial Hexokinase and Phosphorylation of Akt. Cellular Physiology and Biochemistry, 2013, 31, 66-79.	1.6	24
23	Dietary omega-3 fatty acids attenuate myocardial arrhythmogenic factors and propensity of the heart to lethal arrhythmias in a rodent model of human essential hypertension. Journal of Hypertension, 2013, 31, 1876-1885.	0.5	32
24	Electrophoretic Mobility of Cardiac Myosin Heavy Chain Isoforms Revisited: Application of MALDI TOF/TOF Analysis. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-9.	3.0	8
25	Creatine kinase structural changes induced by substrates. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 270-274.	2.3	6
26	Creatine kinase binds more firmly to the M-band of rabbit skeletal muscle myofibrils in the presence of its substrates. Molecular and Cellular Biochemistry, 2007, 305, 55-61.	3.1	9
27	Whole body exposure to low frequency magnetic field: No provable effects on the cellular energetics of rat skeletal muscle. Molecular and Cellular Biochemistry, 2006, 284, 111-115.	3.1	6
28	Substrate Channelling in a Creatine Kinase System of Rat Skeletal Muscle Under Various pH Conditions. Experimental Physiology, 2003, 88, 1-6.	2.0	8