Sang-Yong Ju

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5716834/publications.pdf Version: 2024-02-01

SANG-YONG LU

#	Article	IF	CITATIONS
1	Excited state charge transfer promoted Raman enhancement of copper phthalocyanine by twisted bilayer graphenes. Carbon, 2022, 188, 305-314.	10.3	1
2	Deterministic transfer of thin carbon nanotube film. Bulletin of the Korean Chemical Society, 2022, 43, 196-200.	1.9	1
3	Long-Term Exposure of MoS2 to Oxygen and Water Promoted Armchair-to-Zigzag-Directional Line Unzippings. Nanomaterials, 2022, 12, 1706.	4.1	3
4	Quantification and removal of carbonaceous impurities in a surfactant-assisted carbon nanotube dispersion and its implication on electronic properties. Nanoscale Advances, 2022, 4, 3537-3548.	4.6	3
5	Formation of graphene nanostructures using laser induced vaporization of entrapped water. Carbon, 2021, 183, 84-92.	10.3	6
6	Dispersions of carbon nanotubes by helical flavin surfactants: Solvent induced stability and chirality enrichment, and solvatochromism. Carbon, 2021, 184, 346-356.	10.3	10
7	Flavin Mononucleotide-Mediated Formation of Highly Electrically Conductive Hierarchical Monoclinic Multiwalled Carbon Nanotube-Polyamide 6 Nanocomposites. ACS Nano, 2020, 14, 10655-10665.	14.6	16
8	Coral reef-like functionalized self-assembled monolayers for network formation of carbon nanotube with diameter selectivity. Carbon, 2020, 161, 599-611.	10.3	5
9	Performance Optimization of Parallelâ€Like Ternary Organic Solar Cells through Simultaneous Improvement in Charge Generation and Transport. Advanced Functional Materials, 2019, 29, 1808731.	14.9	37
10	Ternary Organic Solar Cells: Performance Optimization of Parallelâ€Like Ternary Organic Solar Cells through Simultaneous Improvement in Charge Generation and Transport (Adv. Funct. Mater. 14/2019). Advanced Functional Materials, 2019, 29, 1970093.	14.9	0
11	Helical Assembly of Flavin Mononucleotides on Carbon Nanotubes as Multimodal Near-IR Hg(II)-Selective Probes. ACS Applied Materials & Interfaces, 2019, 11, 8400-8411.	8.0	7
12	Growth Order-Dependent Strain Variations of Lateral Transition Metal Dichalcogenide Heterostructures. ACS Applied Electronic Materials, 2019, 1, 113-121.	4.3	16
13	Scaling of binding affinities and cooperativities of surfactants on carbon nanotubes. Carbon, 2018, 139, 427-436.	10.3	19
14	A self-assembled flavin protective coating enhances the oxidative thermal stability of multi-walled carbon nanotubes. Carbon, 2017, 117, 220-227.	10.3	12
15	Determination of the Absolute Enantiomeric Excess of the Carbon Nanotube Ensemble by Symmetry Breaking Using the Optical Titration Method. Langmuir, 2017, 33, 11000-11009.	3.5	13
16	Highly efficient air-stable colloidal quantum dot solar cells by improved surface trap passivation. Nano Energy, 2017, 39, 86-94.	16.0	72
17	Relationships between the optical and Raman behavior of van Hove singularity in twisted bi- and fewlayer graphenes and environmental effects. Carbon, 2017, 111, 238-247.	10.3	10
18	Affinity-mediated sorting order reversal of single-walled carbon nanotubes in density gradient ultracentrifugation. Nanotechnology, 2016, 27, 41LT01.	2.6	12

SANG-YONG JU

#	Article	IF	CITATIONS
19	Preparation and characterization of a covalent edge-functionalized lipoic acid–MoS ₂ conjugate. RSC Advances, 2016, 6, 36248-36255.	3.6	26
20	Selective Dispersion of Highly Pure Large-Diameter Semiconducting Carbon Nanotubes by a Flavin for Thin-Film Transistors. ACS Applied Materials & Interfaces, 2016, 8, 23270-23280.	8.0	32
21	Highly Stable Polymer Solar Cells Based on Poly(dithienobenzodithiophene- <i>co</i> -thienothiophene). Macromolecules, 2015, 48, 3890-3899.	4.8	27
22	Role of residual polymer on chemical vapor grown graphene by Raman spectroscopy. Carbon, 2015, 86, 318-324.	10.3	48
23	Few‣ayer MoS ₂ –Organic Thinâ€Film Hybrid Complementary Inverter Pixel Fabricated on a Glass Substrate. Small, 2015, 11, 2132-2138.	10.0	28
24	Trap density probing on top-gate MoS ₂ nanosheet field-effect transistors by photo-excited charge collection spectroscopy. Nanoscale, 2015, 7, 5617-5623.	5.6	67
25	Multimodal Stimuli-Responsive Poly(2-isopropyl-2-oxazoline) with Dual Molecular Logic Gate Operations. Macromolecules, 2015, 48, 4951-4956.	4.8	34
26	Graphene nanoribbons formed by a sonochemical graphene unzipping using flavin mononucleotide as a template. Carbon, 2015, 81, 629-638.	10.3	38
27	The effects of dendrimer size and central metal ions on photosensitizing properties of dendrimer porphyrins. Journal of Drug Targeting, 2014, 22, 610-618.	4.4	8
28	Multifunctional Schottkyâ€Diode Circuit Comprising Palladium/Molybdenum Disulfide Nanosheet. Small, 2014, 10, 4845-4850.	10.0	11
29	Multiple-layered nonwoven nanosheets consisting of multiwalled carbon nanotubes. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2703-2708.	1.8	1
30	Binding Affinities and Thermodynamics of Noncovalent Functionalization of Carbon Nanotubes with Surfactants. Langmuir, 2013, 29, 11154-11162.	3.5	57
31	Effect of tight flavin mononucleotide wrapping and its binding affinity on carbon nanotube covalent reactivities. Physical Chemistry Chemical Physics, 2013, 15, 19169.	2.8	16
32	Handedness Enantioselection of Carbon Nanotubes Using Helical Assemblies of Flavin Mononucleotide. Journal of the American Chemical Society, 2012, 134, 13196-13199.	13.7	40
33	High-Throughput Graphene Imaging on Arbitrary Substrates with Widefield Raman Spectroscopy. ACS Nano, 2012, 6, 373-380.	14.6	47
34	On-Chip Rayleigh Imaging and Spectroscopy of Carbon Nanotubes. Nano Letters, 2011, 11, 1-7.	9.1	63
35	Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy. ACS Nano, 2011, 5, 1321-1327.	14.6	1,167
36	Single-walled carbon nanotubes as excitonic optical wires. Nature Nanotechnology, 2011, 6, 51-56.	31.5	71

Sang-Yong Ju

#	Article	IF	CITATIONS
37	Brightly Fluorescent Single-Walled Carbon Nanotubes via an Oxygen-Excluding Surfactant Organization. Science, 2009, 323, 1319-1323.	12.6	232
38	Enrichment Mechanism of Semiconducting Single-Walled Carbon Nanotubes by Surfactant Amines. Journal of the American Chemical Society, 2009, 131, 6775-6784.	13.7	56
39	Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide. Nature Nanotechnology, 2008, 3, 356-362.	31.5	222
40	Control of Length and Spatial Functionality of Single-Wall Carbon Nanotube AFM Nanoprobes. Chemistry of Materials, 2008, 20, 2793-2801.	6.7	21
41	Synthesis and Redox Behavior of Flavin Mononucleotide-Functionalized Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2008, 130, 655-664.	13.7	55
42	Purity rolled up in a tube. Nature, 2007, 450, 486-487.	27.8	18
43	NMR Investigation of n-Alkylamine Self-Organization Along the Sidewalls of Single-Wall Carbon Nanotubes (SWNTs). Materials Research Society Symposia Proceedings, 2004, 858, 20.	0.1	0
44	Synthesis and photochromism of polymer-bound phenoxyquinone derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 160, 151-157.	3.9	7
45	Synthesis of Norbornene-Derived Polymers Having Pendant Phenoxyquinones for Photochromism. Macromolecules, 2001, 34, 4291-4293.	4.8	17