José M Herreros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5716650/publications.pdf Version: 2024-02-01

IOSÃO M HEDDEDOS

#	Article	IF	CITATIONS
1	Emissions from a diesel–bioethanol blend in an automotive diesel engine. Fuel, 2008, 87, 25-31.	6.4	287
2	Combustion characteristics and emissions of 2-methylfuran compared to 2,5-dimethylfuran, gasoline and ethanol in a DISI engine. Fuel, 2013, 103, 200-211.	6.4	254
3	Effect of the alcohol type used in the production of waste cooking oil biodiesel on diesel performance and emissions. Fuel, 2008, 87, 3161-3169.	6.4	226
4	Impact of fuel and injection system on particle emissions from a GDI engine. Applied Energy, 2014, 132, 178-191.	10.1	208
5	Effect of engine operating conditions on the size of primary particles composing diesel soot agglomerates. Journal of Aerosol Science, 2007, 38, 455-466.	3.8	194
6	The effect of biodiesel fatty acid composition on combustion and diesel engine exhaust emissions. Fuel, 2013, 104, 170-182.	6.4	169
7	Ammonia as hydrogen carrier for transportation; investigation of the ammonia exhaust gas fuel reforming. International Journal of Hydrogen Energy, 2013, 38, 9907-9917.	7.1	143
8	Hydrogen assisted diesel combustion. International Journal of Hydrogen Energy, 2010, 35, 4382-4398.	7.1	140
9	The effect of the addition of individual methyl esters on the combustion and emissions of ethanol and butanol -diesel blends. Energy, 2012, 42, 364-374.	8.8	124
10	Diesel emissions improvements through the use of biodiesel or oxygenated blending components. Fuel, 2012, 95, 578-586.	6.4	116
11	Improving gasoline direct injection (GDI) engine efficiency and emissions with hydrogen from exhaust gas fuel reforming. International Journal of Hydrogen Energy, 2014, 39, 5153-5162.	7.1	80
12	Fuel Effect on Particulate Matter Composition and Soot Oxidation in a Direct-Injection Spark Ignition (DISI) Engine. Energy & Fuels, 2014, 28, 2003-2012.	5.1	74
13	Characteristics of LPG-diesel dual fuelled engine operated with rapeseed methyl ester and gas-to-liquid diesel fuels. Energy, 2012, 47, 620-629.	8.8	66
14	Enhancing the low temperature oxidation performance over a Pt and a Pt–Pd diesel oxidation catalyst. Applied Catalysis B: Environmental, 2014, 147, 835-841.	20.2	66
15	Investigation of two-stage split-injection strategies for a Dieseline fuelled PPCI engine. Fuel, 2013, 107, 299-308.	6.4	65
16	Effect of hydrogen on butanol–biodiesel blends in compression ignition engines. International Journal of Hydrogen Energy, 2013, 38, 1624-1635.	7.1	61
17	Finding Synergies in Fuels Properties for the Design of Renewable Fuels – Hydroxylated Biodiesel Effects on Butanol-Diesel Blends. Environmental Science & Technology, 2013, 47, 3535-3542. 	10.0	52
18	Role of Alternative Fuels on Particulate Matter (PM) Characteristics and Influence of the Diesel Oxidation Catalyst. Environmental Science & Technology, 2015, 49, 11967-11973.	10.0	51

JOSé M HERREROS

#	Article	IF	CITATIONS
19	Blending lignin-derived oxygenate in enhanced multi-component diesel fuel for improved emissions. Applied Energy, 2014, 116, 58-65.	10.1	39
20	Investigation of compression ratio and fuel effect on combustion and PM emissions in a DISI engine. Fuel, 2016, 169, 68-78.	6.4	36
21	Machine learning regression based group contribution method for cetane and octane numbers prediction of pure fuel compounds and mixtures. Fuel, 2020, 280, 118589.	6.4	33
22	Extending the environmental benefits of ethanol–diesel blends through DGE incorporation. Applied Energy, 2015, 146, 335-343.	10.1	31
23	Thermochemical recovery technology for improved modern engine fuel economy – part 1: analysis of a prototype exhaust gas fuel reformer. RSC Advances, 2015, 5, 35252-35261.	3.6	29
24	Gasoline direct injection engine soot oxidation: Fundamentals and determination of kinetic parameters. Combustion and Flame, 2018, 190, 177-187.	5.2	29
25	Reduction of Low Temperature Engine Pollutants by Understanding the Exhaust Species Interactions in a Diesel Oxidation Catalyst. Environmental Science & Technology, 2014, 48, 2361-2367.	10.0	27
26	Machine learning-quantitative structure property relationship (ML-QSPR) method for fuel physicochemical properties prediction of multiple fuel types. Fuel, 2021, 304, 121437.	6.4	27
27	Influence of Three-Way Catalyst on Gaseous and Particulate Matter Emissions During Gasoline Direct Injection Engine Cold-start. Johnson Matthey Technology Review, 2017, 61, 329-341.	1.0	26
28	Increased NO2 concentration in the diesel engine exhaust for improved Ag/Al2O3 catalyst NH3-SCR activity. Chemical Engineering Journal, 2015, 270, 582-589.	12.7	25
29	GDI Engine Performance and Emissions with Reformed Exhaust Gas Recirculation (REGR). , 0, , .		23
30	Uncertainties in the determination of particle size distributions using a mini tunnel–SMPS system during Diesel engine testing. Measurement Science and Technology, 2007, 18, 2121-2130.	2.6	22
31	Influence of the addition of LPG-reformate and H2 on an engine dually fuelled with LPG–diesel, –RME and –GTL Fuels. Fuel, 2014, 118, 73-82.	6.4	22
32	Simultaneous control of NOx, soot and fuel economy of a diesel engine with dual-loop EGR and VNT using economic MPC. Control Engineering Practice, 2021, 108, 104701.	5.5	19
33	Chemical kinetic study on ignition and flame characteristic of polyoxymethylene dimethyl ether 3 (PODE3). Fuel, 2020, 279, 118423.	6.4	18
34	Exergy evaluation and ORC use as an alternative for efficiency improvement in a CI-engine power plant. Sustainable Energy Technologies and Assessments, 2018, 30, 216-223.	2.7	17
35	Advanced Combustion Operation in a Compression Ignition Engine. Energy & amp; Fuels, 2009, 23, 143-150.	5.1	16
36	Synergies in renewable fuels and exhaust heat thermochemical recovery in low carbon vehicles. Applied Energy, 2021, 302, 117491.	10.1	13

JOSé M HERREROS

#	Article	IF	CITATIONS
37	Filtered EGR – a step towards an improved NOX/soot trade-off for DPF regeneration. RSC Advances, 2012, 2, 10400.	3.6	12
38	Influence of Short Carbon-Chain Alcohol (Ethanol and 1-Propanol)/Diesel Fuel Blends over Diesel Engine Emissions. Energies, 2021, 14, 1309.	3.1	12
39	Chemical kinetic modeling of diethoxymethane oxidation: A carbon–neutral fuel. Fuel, 2021, 291, 120217.	6.4	12
40	Novel Functional Group Contribution Method for Surrogate Formulation with Accurate Fuel Compositions. Energy & amp; Fuels, 2020, 34, 2989-3012.	5.1	11
41	Influence of Fuel Properties, Hydrogen, and Reformate Additions on Diesel-Biogas Dual-Fueled Engine. Journal of Energy Engineering - ASCE, 2014, 140, .	1.9	10
42	Experimental investigation of particle emissions from a Dieseline fuelled compression ignition engine. Fuel, 2019, 251, 175-186.	6.4	10
43	Engine Thermal Efficiency Gain and Well-to-Wheel Greenhouse Gas Savings When Using Bioethanol as a Gasoline-Blending Component in Future Spark-Ignition Engines: A China Case Study. Energy & Fuels, 2018, 32, 1724-1732.	5.1	9
44	Integrated machine learning-quantitative structure property relationship (ML-QSPR) and chemical kinetics for high throughput fuel screening toward internal combustion engine. Fuel, 2022, 307, 121908.	6.4	9
45	Thermal Performance of Diesel Aftertreatment: Material and Insulation CFD Analysis. , 0, , .		8
46	Improving Ethanol-Diesel Blend Through the Use of Hydroxylated Biodiesel. , 2014, , .		8
47	Gasoline Particulate Filter Wall Permeability Testing. SAE International Journal of Engines, 0, 11, 571-584.	0.4	8
48	Sensitivity of pollutants abatement in oxidation catalysts to the use of alternative fuels. Fuel, 2021, 297, 120686.	6.4	8
49	A Comparative Study of Biofuels and Fischer–Tropsch Diesel Blends on the Engine Combustion Performance for Reducing Exhaust Gaseous and Particulate Emissions. Energies, 2021, 14, 1538.	3.1	7
50	The Use of a Partial Flow Filter to Assist the Diesel Particulate Filter and Reduce Active Regeneration Events. SAE International Journal of Engines, 0, 7, 1953-1960.	0.4	5
51	Effects of high octane additivated gasoline fuel on Three Way Catalysts performance under an accelerated catalyst ageing procedure. Fuel, 2022, 312, 122970.	6.4	5
52	Impact of Alternative Paraffinic Fuels on the Durability of a Modern Common Rail Injection System. Energies, 2020, 13, 4166.	3.1	4
53	Investigation of the effects of split-injection on particle emissions from a Dieseline CI engine. Applied Energy, 2020, 262, 114470.	10.1	4
54	Fischer-Tropsch Diesel and Biofuels Exergy and Energy Analysis for Low Emissions Vehicles. Applied Sciences (Switzerland), 2021, 11, 5958.	2.5	4

4

José M Herreros

#	Article	IF	CITATIONS
55	Using Catalytic Heat Recovery to Improve Efficiency of Gasoline Spark Ignition Engines. Johnson Matthey Technology Review, 2018, 62, 407-416.	1.0	3
56	Machine learning and deep learning enabled fuel sooting tendency prediction from molecular structure. Journal of Molecular Graphics and Modelling, 2022, 111, 108083.	2.4	3
57	Electrified Powertrain with Multiple Planetary Gears and Corresponding Energy Management Strategy. Vehicles, 2021, 3, 341-356.	3.1	2
58	Tribological Performance of Biomass-Derived Bio-Alcohol and Bio-Ketone Fuels. Energies, 2021, 14, 5331.	3.1	2
59	Influence of the cell geometry on the conversion efficiency of oxidation catalysts under real driving conditions. Energy Conversion and Management, 2021, 233, 113888.	9.2	1