
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5716563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulated macrophage immune microenvironment in 3D printed scaffolds for bone tumor postoperative treatment. Bioactive Materials, 2023, 19, 474-485.	8.6	11
2	Click chemistry extracellular vesicle/peptide/chemokine nanocarriers for treating central nervous system injuries. Acta Pharmaceutica Sinica B, 2023, 13, 2202-2218.	5.7	17
3	Gelatin-based composite hydrogels with biomimetic lubrication and sustained drug release. Friction, 2022, 10, 232-246.	3.4	23
4	Biodegradable dual-crosslinked adhesive glue for fixation and promotion of osteogenesis. Chemical Engineering Journal, 2022, 427, 132000.	6.6	31
5	Metformin-hydrogel with glucose responsiveness for chronic inflammatory suppression. Chemical Engineering Journal, 2022, 428, 131064.	6.6	26
6	Local bone metabolism balance regulation via double-adhesive hydrogel for fixing orthopedic implants. Bioactive Materials, 2022, 12, 169-184.	8.6	8
7	Inhaled ACE2-engineered microfluidic microsphere for intratracheal neutralization of COVID-19 and calming of the cytokine storm. Matter, 2022, 5, 336-362.	5.0	39
8	Biomaterials for microfluidic technology. Materials Futures, 2022, 1, 012401.	3.1	11
9	Engineering immunomodulatory and osteoinductive implant surfaces via mussel adhesion-mediated ion coordination and molecular clicking. Nature Communications, 2022, 13, 160.	5.8	66
10	Silencing Geneâ€Engineered Injectable Hydrogel Microsphere for Regulation of Extracellular Matrix Metabolism Balance. Small Methods, 2022, 6, e2101201.	4.6	24
11	Functional biomaterials. APL Bioengineering, 2022, 6, 010401.	3.3	4
12	Transcriptome Analysis Revealed the Symbiosis Niche of 3D Scaffolds to Accelerate Bone Defect Healing. Advanced Science, 2022, 9, e2105194.	5.6	31
13	Injectable "nano-micron―combined gene-hydrogel microspheres for local treatment of osteoarthritis. NPG Asia Materials, 2022, 14, .	3.8	58
14	Endogenous Electricâ€Fieldâ€Coupled Electrospun Short Fiber via Collecting Wound Exudation. Advanced Materials, 2022, 34, e2108325.	11.1	75
15	Regulated Exogenous/Endogenous Inflammation via "Innerâ€Outer―Medicated Electrospun Fibers for Promoting Tissue Reconstruction. Advanced Healthcare Materials, 2022, 11, e2102534.	3.9	13
16	Bacteria-engineered porous sponge for hemostasis and vascularization. Journal of Nanobiotechnology, 2022, 20, 47.	4.2	18
17	Injectable hydrogel microspheres with self-renewable hydration layers alleviate osteoarthritis. Science Advances, 2022, 8, eabl6449.	4.7	90
18	Adhesive and Injectable Hydrogel Microspheres for Inner Ear Treatment. Small, 2022, 18, e2106591.	5.2	24

#	Article	IF	CITATIONS
19	Modulated integrin signaling receptors of stem cells via ultra-soft hydrogel for promoting angiogenesis. Composites Part B: Engineering, 2022, 234, 109747.	5.9	12
20	Biological signal integrated microfluidic hydrogel microspheres for promoting bone regeneration. Chemical Engineering Journal, 2022, 436, 135176.	6.6	20
21	Honeycomb-Like Hydrogel Microspheres for 3D Bulk Construction of Tumor Models. Research, 2022, 2022, 9809763.	2.8	11
22	Endogenous Electricâ€Fieldâ€Coupled Electrospun Short Fiber via Collecting Wound Exudation (Adv.) Tj ETQq0	0 0 rgBT /0 11:1	Overlock 10 T

23	Bipolar Metal Flexible Electrospun Fibrous Membrane Based on Metal–Organic Framework for Gradient Healing of Tendonâ€toâ€Bone Interface Regeneration. Advanced Healthcare Materials, 2022, 11, e2200072.	3.9	14
24	Secretory Fluidâ€Aggregated Janus Electrospun Short Fiber Scaffold for Wound Healing. Small, 2022, 18, e2200799.	5.2	43
25	NSC-derived extracellular matrix-modified GelMA hydrogel fibrous scaffolds for spinal cord injury repair. NPG Asia Materials, 2022, 14, .	3.8	21
26	Open‣hell Nanosensitizers for Glutathione Responsive Cancer Sonodynamic Therapy. Advanced Materials, 2022, 34, e2110283.	11.1	48
27	Regulating Macrophage Polarization in High Glucose Microenvironment Using Lithiumâ€Modified Bioglassâ€Hydrogel for Diabetic Bone Regeneration. Advanced Healthcare Materials, 2022, 11, e2200298.	3.9	29
28	A Biomaterialâ€Based Hedging Immune Strategy for Scarless Tendon Healing. Advanced Materials, 2022, 34, e2200789.	11.1	14
29	Regulation of macrophage subtype via injectable micro/nano-structured porous microsphere for reprogramming osteoimmune microenvironment. Chemical Engineering Journal, 2022, 439, 135692.	6.6	11
30	Shear-responsive boundary-lubricated hydrogels attenuate osteoarthritis. Bioactive Materials, 2022, 16, 472-484.	8.6	31
31	Functional nanoparticles in electrospun fibers for biomedical applications. Nano Select, 2022, 3, 999-1011.	1.9	9
32	Advanced Biomaterials for Regulating Polarization of Macrophages in Wound Healing. Advanced Functional Materials, 2022, 32, .	7.8	68
33	Dual Biosignalâ€Functional Injectable Microspheres for Remodeling Osteogenic Microenvironment. Small, 2022, 18, e2201656.	5.2	16
34	Transporting Hydrogel via Chinese Acupuncture Needles for Lesion Positioning Therapy. Advanced Science, 2022, 9, e2200079.	5.6	15
35	Balancing Microthrombosis and Inflammation via Injectable Protein Hydrogel for Inflammatory Bowel Disease. Advanced Science, 2022, 9, e2200281.	5.6	26
36	Nanoantidote for repression of acidosis pH promoting COVIDâ€19 infection. View, 2022, 3, .	2.7	5

#	Article	IF	CITATIONS
37	Nanofat functionalized injectable super-lubricating microfluidic microspheres for treatment of osteoarthritis. Biomaterials, 2022, 285, 121545.	5.7	12
38	Programmable multicellular and spatially patterned organoids: A one-pot strategy. Matter, 2022, 5, 1633-1635.	5.0	1
39	Self-assembly of DNA nanogels with endogenous microRNA toehold self-regulating switches for targeted gene regulation therapy. Biomaterials Science, 2022, 10, 4119-4125.	2.6	12
40	Porous scaffolds with enzyme-responsive Kartogenin release for recruiting stem cells and promoting cartilage regeneration. Chemical Engineering Journal, 2022, 447, 137454.	6.6	5
41	Progress of delivery methods for CRISPR-Cas9. Expert Opinion on Drug Delivery, 2022, 19, 913-926.	2.4	14
42	Immunology and bioinformatics analysis of injectable organic/inorganic microfluidic microspheres for promoting bone repair. Biomaterials, 2022, 288, 121685.	5.7	14
43	Nutrient capsules maintain tear film homeostasis for human corneal lenticule transplantation. Chemical Engineering Journal, 2022, 450, 138078.	6.6	3
44	Charge and receptor functional injectable hydrogels as cytokine-releasing reservoirs for wound healing. Chemical Engineering Journal, 2022, 450, 137880.	6.6	9
45	Mineralized manganese dioxide channel as the stent coating for in situ precise tumor navigation. Nano Research, 2021, 14, 2145.	5.8	2
46	MMPâ€2 Responsive Unidirectional Hydrogelâ€Electrospun Patch Loading TGFâ€Î²1 siRNA Polyplexes for Peritendinous Antiâ€Adhesion. Advanced Functional Materials, 2021, 31, 2008364.	7.8	30
47	Two Sides of Electrospun Fiber in Promoting and Inhibiting Biomedical Processes. Advanced Therapeutics, 2021, 4, .	1.6	14
48	Effect of kartogenin-loaded gelatin methacryloyl hydrogel scaffold with bone marrow stimulation for enthesis healing in rotator cuff repair. Journal of Shoulder and Elbow Surgery, 2021, 30, 544-553.	1.2	18
49	Multifunctional integrally-medicalized hydrogel system with internal synergy for efficient tissue regeneration. Chemical Engineering Journal, 2021, 406, 126839.	6.6	27
50	Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair. Bioactive Materials, 2021, 6, 1639-1652.	8.6	70
51	Biologically modified nanoparticles as theranostic bionanomaterials. Progress in Materials Science, 2021, 118, 100768.	16.0	108
52	Tissue-specific engineering: 3D bioprinting in regenerative medicine. Journal of Controlled Release, 2021, 329, 237-256.	4.8	45
53	Heatâ€Shrinkable Electrospun Fibrous Tape for Restoring Structure and Function of Loose Soft Tissue. Advanced Functional Materials, 2021, 31, 2007440.	7.8	17
54	Regulation of the inflammatory cycle by a controllable release hydrogel for eliminating postoperative inflammation after discectomy. Bioactive Materials, 2021, 6, 146-157.	8.6	33

#	Article	IF	CITATIONS
55	Conditioned medium-electrospun fiber biomaterials for skin regeneration. Bioactive Materials, 2021, 6, 361-374.	8.6	43
56	Targeted micelles with chemotherapeutics and gene drugs to inhibit the G1/S and G2/M mitotic cycle of prostate cancer. Journal of Nanobiotechnology, 2021, 19, 17.	4.2	26
57	Bacteria-specific phototoxic reactions triggered by blue light and phytochemical carvacrol. Science Translational Medicine, 2021, 13, .	5.8	42
58	Electrospun Fibrous Tapes: Heatâ€Shrinkable Electrospun Fibrous Tape for Restoring Structure and Function of Loose Soft Tissue (Adv. Funct. Mater. 8/2021). Advanced Functional Materials, 2021, 31, 2170054.	7.8	1
59	Rapid Extracellular Matrix Remodeling via Geneâ€Electrospun Fibers as a "Patch―for Tissue Regeneration. Advanced Functional Materials, 2021, 31, 2009879.	7.8	25
60	Modulation of Local Overactive Inflammation via Injectable Hydrogel Microspheres. Nano Letters, 2021, 21, 2690-2698.	4.5	101
61	Microenvironmentâ€Protected Exosomeâ€Hydrogel for Facilitating Endometrial Regeneration, Fertility Restoration, and Live Birth of Offspring. Small, 2021, 17, e2007235.	5.2	78
62	Biomedical application of photo-crosslinked gelatin hydrogels. Journal of Leather Science and Engineering, 2021, 3, .	2.7	54
63	Fertility Restoration: Microenvironmentâ€Protected Exosomeâ€Hydrogel for Facilitating Endometrial Regeneration, Fertility Restoration, and Live Birth of Offspring (Small 11/2021). Small, 2021, 17, 2170049.	5.2	2
64	Light ontrolled Nanosystem with Sizeâ€Flexibility Improves Targeted Retention for Tumor Suppression. Advanced Functional Materials, 2021, 31, 2101262.	7.8	21
65	DNAâ€Grafted Hyaluronic Acid System with Enhanced Injectability and Biostability for Photoâ€Controlled Osteoarthritis Gene Therapy. Advanced Science, 2021, 8, 2004793.	5.6	28
66	Photo-crosslinkable amniotic membrane hydrogel for skin defect healing. Acta Biomaterialia, 2021, 125, 197-207.	4.1	63
67	Electrospun fibrous sponge via short fiber for mimicking 3D ECM. Journal of Nanobiotechnology, 2021, 19, 131.	4.2	43
68	Multistage signal-interactive nanoparticles improve tumor targeting through efficient nanoparticle-cell communications. Cell Reports, 2021, 35, 109131.	2.9	6
69	Injectable Microfluidic Hydrogel Microspheres for Cell and Drug Delivery. Advanced Functional Materials, 2021, 31, 2103339.	7.8	117
70	Peritumoral Microgel Reservoir for Longâ€Term Lightâ€Controlled Tripleâ€6ynergistic Treatment of Osteosarcoma with Single Ultra‣ow Dose. Small, 2021, 17, e2100479.	5.2	38
71	Gradient bimetallic ion–based hydrogels for tissue microstructure reconstruction of tendon-to-bone insertion. Science Advances, 2021, 7, .	4.7	83
72	Flexible Osteogenic Glue as an Allâ€Inâ€One Solution to Assist Fracture Fixation and Healing. Advanced Functional Materials, 2021, 31, 2102465.	7.8	40

#	Article	IF	CITATIONS
73	Stem Cellâ€Recruiting Injectable Microgels for Repairing Osteoarthritis. Advanced Functional Materials, 2021, 31, 2105084.	7.8	48
74	Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Advanced Drug Delivery Reviews, 2021, 174, 504-534.	6.6	163
75	Colonâ€Targeted Adhesive Hydrogel Microsphere for Regulation of Gut Immunity and Flora. Advanced Science, 2021, 8, e2101619.	5.6	91
76	An orthobiologics-free strategy for synergistic photocatalytic antibacterial and osseointegration. Biomaterials, 2021, 274, 120853.	5.7	52
77	Capturing Magnesium Ions <i>via</i> Microfluidic Hydrogel Microspheres for Promoting Cancellous Bone Regeneration. ACS Nano, 2021, 15, 13041-13054.	7.3	133
78	Microfluidic Hydrogel Microspheres: Injectable Microfluidic Hydrogel Microspheres for Cell and Drug Delivery (Adv. Funct. Mater. 31/2021). Advanced Functional Materials, 2021, 31, 2170227.	7.8	25
79	Myocardial fibrosis reversion via rhACE2-electrospun fibrous patch for ventricular remodeling prevention. Npj Regenerative Medicine, 2021, 6, 44.	2.5	7
80	A removable bio-orthogonal catalytic patch: A local "landmine― Matter, 2021, 4, 2601-2602.	5.0	2
81	Biomaterial-based delivery of nucleic acids for tissue regeneration. Advanced Drug Delivery Reviews, 2021, 176, 113885.	6.6	53
82	Chargeâ€Guided Micro/Nanoâ€Hydrogel Microsphere for Penetrating Cartilage Matrix. Advanced Functional Materials, 2021, 31, 2107678.	7.8	63
83	Acoustic transmitted electrospun fibrous membranes for tympanic membrane regeneration. Chemical Engineering Journal, 2021, 419, 129536.	6.6	14
84	Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration. Biomaterials, 2021, 276, 121037.	5.7	85
85	Programmable immune activating electrospun fibers for skin regeneration. Bioactive Materials, 2021, 6, 3218-3230.	8.6	42
86	Advanced electrospun hydrogel fibers for wound healing. Composites Part B: Engineering, 2021, 223, 109101.	5.9	81
87	Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis. Bioactive Materials, 2021, 6, 3596-3607.	8.6	122
88	Improving drug utilization platform with injectable mucoadhesive hydrogel for treating ulcerative colitis. Chemical Engineering Journal, 2021, 424, 130464.	6.6	13
89	Highly active biological dermal acellular tissue scaffold composite with human bone powder for bone regeneration. Materials and Design, 2021, 209, 109963.	3.3	4
90	Fullerol-hydrogel microfluidic spheres for in situ redox regulation of stem cell fate and refractory bone healing. Bioactive Materials, 2021, 6, 4801-4815.	8.6	49

#	Article	IF	CITATIONS
91	Mechanism of zirconia microgroove surface structure for osseointegration. Materials Today Advances, 2021, 12, 100159.	2.5	9
92	Capturing dynamic biological signals via bio-mimicking hydrogel for precise remodeling of soft tissue. Bioactive Materials, 2021, 6, 4506-4516.	8.6	36
93	Metal-organic framework (MOF)-based biomaterials in bone tissue engineering. Engineered Regeneration, 2021, 2, 105-108.	3.0	24
94	Electrospun Nanofibers for Cancer Therapy. Advances in Experimental Medicine and Biology, 2021, 1295, 163-190.	0.8	10
95	Electrospun Fibers Improving Cellular Respiration via Mitochondrial Protection. Small, 2021, 17, e2104012.	5.2	25
96	Biological homeostasis-inspired light-excited multistage nanocarriers induce dual apoptosis in tumors. Biomaterials, 2021, 279, 121194.	5.7	10
97	Stem Cellâ€Recruiting Injectable Microgels for Repairing Osteoarthritis (Adv. Funct. Mater. 48/2021). Advanced Functional Materials, 2021, 31, 2170357.	7.8	8
98	Engineered Customizable Microvessels for Progressive Vascularization in Large Regenerative Implants. Advanced Healthcare Materials, 2021, , 2101836.	3.9	6
99	Advanced microfluidic devices for fabricating multiâ€structural hydrogel microsphere. Exploration, 2021, 1, .	5.4	35
100	Hierarchical micro/nanofibrous membranes of sustained releasing VEGF for periosteal regeneration. Biomaterials, 2020, 227, 119555.	5.7	185
101	Anisotropic ridge/groove microstructure for regulating morphology and biological function of Schwann cells. Applied Materials Today, 2020, 18, 100468.	2.3	19
102	Geneâ€Hydrogel Microenvironment Regulates Extracellular Matrix Metabolism Balance in Nucleus Pulposus. Advanced Science, 2020, 7, 1902099.	5.6	67
103	Responsive drug-delivery microcarriers based on the silk fibroin inverse opal scaffolds for controllable drug release. Applied Materials Today, 2020, 19, 100540.	2.3	34
104	Host Defense Peptide Mimicking Peptide Polymer Exerting Fast, Broad Spectrum, and Potent Activities toward Clinically Isolated Multidrug-Resistant Bacteria. ACS Infectious Diseases, 2020, 6, 479-488.	1.8	39
105	Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials, 2020, 232, 119706.	5.7	127
106	Gelatin Templated Polypeptide Co ross‣inked Hydrogel for Bone Regeneration. Advanced Healthcare Materials, 2020, 9, e1901239.	3.9	112
107	Direct investigation of current transport in cells by conductive atomic force microscopy. Journal of Microscopy, 2020, 277, 49-57.	0.8	6
108	Recombination Monophosphoryl Lipid A-Derived Vacosome for the Development of Preventive Cancer Vaccines. ACS Applied Materials & Interfaces, 2020, 12, 44554-44562.	4.0	17

#	Article	IF	CITATIONS
109	Postoperative placement of an antiâ€fibrotic poly Lâ€lactide electrospun fibrous membrane after sinus surgery. International Forum of Allergy and Rhinology, 2020, 10, 1285-1294.	1.5	1
110	Metabolism Balance Regulation via Antagonistâ€Functionalized Injectable Microsphere for Nucleus Pulposus Regeneration. Advanced Functional Materials, 2020, 30, 2006333.	7.8	40
111	Black phosphorus-based 2D materials for bone therapy. Bioactive Materials, 2020, 5, 1026-1043.	8.6	60
112	ECM-inspired micro/nanofibers for modulating cell function and tissue generation. Science Advances, 2020, 6, .	4.7	78
113	Bioinspired Functional Black Phosphorus Electrospun Fibers Achieving Recruitment and Biomineralization for Staged Bone Regeneration. Small, 2020, 16, e2005433.	5.2	57
114	CRISPR as system for biomedical diagnostic platforms. View, 2020, 1, 20200008.	2.7	20
115	A "three-in-one―injectable hydrogel platform with osteogenesis, angiogenesis and antibacterial for guiding bone regeneration. Applied Materials Today, 2020, 20, 100763.	2.3	13
116	Ballâ€Bearingâ€Inspired Polyampholyteâ€Modified Microspheres as Bioâ€Lubricants Attenuate Osteoarthritis. Small, 2020, 16, e2004519.	5.2	73
117	Functional Electrospun Fibers for Local Therapy of Cancer. Advanced Fiber Materials, 2020, 2, 229-245.	7.9	105
118	Cell Membrane-Inspired Polymeric Vesicles for Combined Photothermal and Photodynamic Prostate Cancer Therapy. ACS Applied Materials & amp; Interfaces, 2020, 12, 42511-42520.	4.0	43
119	Injectable and Selfâ€Healing Hydrogel with Antiâ€Bacterial and Antiâ€Inflammatory Properties for Acute Bacterial Rhinosinusitis with Micro Invasive Treatment. Advanced Healthcare Materials, 2020, 9, e2001032.	3.9	17
120	Microenvironment-responsive immunoregulatory electrospun fibers for promoting nerve function recovery. Nature Communications, 2020, 11, 4504.	5.8	127
121	Ice-Inspired Superlubricated Electrospun Nanofibrous Membrane for Preventing Tissue Adhesion. Nano Letters, 2020, 20, 6420-6428.	4.5	29
122	Injectable Porous Microspheres: Metabolism Balance Regulation via Antagonistâ€Functionalized Injectable Microsphere for Nucleus Pulposus Regeneration (Adv. Funct. Mater. 52/2020). Advanced Functional Materials, 2020, 30, 2070348.	7.8	2
123	Efficient integration and fast excretion of drug carrier: The trojan horse for cancer therapy. Smart Materials in Medicine, 2020, 1, 148-149.	3.7	1
124	Injectable Polypeptideâ€Protein Hydrogels for Promoting Infected Wound Healing. Advanced Functional Materials, 2020, 30, 2001196.	7.8	186
125	Thermoâ€Sensitive Dualâ€Functional Nanospheres with Enhanced Lubrication and Drug Delivery for the Treatment of Osteoarthritis. Chemistry - A European Journal, 2020, 26, 10564-10574.	1.7	29

Microvascular Scaffolds: A Biomimetic $3D\hat{a} \in Self\hat{a} \in F$ orming Approach for Microvascular Scaffolds (Adv.) Tj ETQq0 0 0 rgBT /Overlock 10 - 5.6 rgBT /Overlock 10 - 5.6

#	Article	IF	CITATIONS
127	Electrospun fibers: an innovative delivery method for the treatment of bone diseases. Expert Opinion on Drug Delivery, 2020, 17, 993-1005.	2.4	18
128	Nano-in-micro electronspun membrane: merging nanocarriers and microfibrous scaffold for long-term scar inhibition. Chemical Engineering Journal, 2020, 397, 125405.	6.6	11
129	Promoting coagulation and activating SMAD3 phosphorylation in wound healing via a dual-release thrombin-hydrogel. Chemical Engineering Journal, 2020, 397, 125414.	6.6	11
130	Beeswax-inspired superhydrophobic electrospun membranes for peritendinous anti-adhesion. Materials Science and Engineering C, 2020, 116, 111166.	3.8	24
131	Mechanical on-off gates for regulation of drug release in cutaneous or musculoskeletal tissue repairs. Materials Science and Engineering C, 2020, 115, 111048.	3.8	3
132	Vascularized silk electrospun fiber for promoting oral mucosa regeneration. NPG Asia Materials, 2020, 12, .	3.8	17
133	Stem cell-laden injectable hydrogel microspheres for cancellous bone regeneration. Chemical Engineering Journal, 2020, 393, 124715.	6.6	71
134	Microfluidic liposomes-anchored microgels as extended delivery platform for treatment of osteoarthritis. Chemical Engineering Journal, 2020, 400, 126004.	6.6	94
135	Cartilage matrix-inspired biomimetic superlubricated nanospheres for treatment of osteoarthritis. Biomaterials, 2020, 242, 119931.	5.7	77
136	A Biomimetic 3D‣elfâ€Forming Approach for Microvascular Scaffolds. Advanced Science, 2020, 7, 1903553.	5.6	46
137	NIR-responsible and optically monitored nanoparticles release from electrospinning fibrous matrices. Materials Today Advances, 2020, 6, 100044.	2.5	3
138	Biomimetic organic-inorganic hybrid hydrogel electrospinning periosteum for accelerating bone regeneration. Materials Science and Engineering C, 2020, 110, 110670.	3.8	67
139	Programmed Sustained Release of Recombinant Human Bone Morphogenetic Protein-2 and Inorganic Ion Composite Hydrogel as Artificial Periosteum. ACS Applied Materials & Interfaces, 2020, 12, 6840-6851.	4.0	64
140	In situ inflammatory-regulated drug-loaded hydrogels for promoting pelvic floor repair. Journal of Controlled Release, 2020, 322, 375-389.	4.8	42
141	Editorial: Nanotechnology in Cardiovascular Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2020, 8, 608844.	2.0	5
142	Construction of Dual-Biofunctionalized Chitosan/Collagen Scaffolds for Simultaneous Neovascularization and Nerve Regeneration. Research, 2020, 2020, 2603048.	2.8	28
143	Hydration-Enhanced Lubricating Electrospun Nanofibrous Membranes Prevent Tissue Adhesion. Research, 2020, 2020, 4907185.	2.8	64
144	Biomaterial Scaffolds for Improving Vascularization During Skin Flap Regeneration. Chinese Journal of Plastic and Reconstructive Surgery, 2020, 2, 109-119.	0.1	5

#	Article	IF	CITATIONS
145	Metal Species–Encapsulated Mesoporous Silica Nanoparticles: Current Advancements and Latest Breakthroughs. Advanced Functional Materials, 2019, 29, 1902652.	7.8	104
146	Outer–inner dual reinforced micro/nano hierarchical scaffolds for promoting osteogenesis. Nanoscale, 2019, 11, 15794-15803.	2.8	5
147	Bioinspired Hyaluronic Acid/Phosphorylcholine Polymer with Enhanced Lubrication and Anti-Inflammation. Biomacromolecules, 2019, 20, 4135-4142.	2.6	58
148	Nanoparticleâ€Embedded Electrospun Fiber–Covered Stent to Assist Intraluminal Photodynamic Treatment of Oesophageal Cancer. Small, 2019, 15, e1904979.	5.2	33
149	Cell Therapeutic Strategies for Spinal Cord Injury. Advances in Wound Care, 2019, 8, 585-605.	2.6	30
150	Recent advance of erythrocyte-mimicking nanovehicles: From bench to bedside. Journal of Controlled Release, 2019, 314, 81-91.	4.8	22
151	Biomimicry, biomineralization, and bioregeneration of bone using advanced three-dimensional fibrous hydroxyapatite scaffold. Materials Today Advances, 2019, 3, 100014.	2.5	30
152	Bone remodeling-inspired dual delivery electrospun nanofibers for promoting bone regeneration. Nanoscale, 2019, 11, 60-71.	2.8	103
153	An injectable self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic skin wound repair. NPG Asia Materials, 2019, 11, .	3.8	260
154	Adhesive nanoparticles with inflammation regulation for promoting skin flap regeneration. Journal of Controlled Release, 2019, 297, 91-101.	4.8	37
155	Development of a visible light, cross-linked GelMA hydrogel containing decellularized human amniotic particles as a soft tissue replacement for oral mucosa repair. RSC Advances, 2019, 9, 18344-18352.	1.7	28
156	Advanced biomaterials for repairing and reconstruction of mandibular defects. Materials Science and Engineering C, 2019, 103, 109858.	3.8	67
157	An electrospun fiber-covered stent with programmable dual drug release for endothelialization acceleration and lumen stenosis prevention. Acta Biomaterialia, 2019, 94, 295-305.	4.1	50
158	Osteogenic and antiseptic nanocoating by in situ chitosan regulated electrochemical deposition for promoting osseointegration. Materials Science and Engineering C, 2019, 102, 415-426.	3.8	22
159	Clinical Translation of Nanomaterials. , 2019, , 75-111.		0
160	Immunomodulated electrospun fibrous scaffolds via bFGF camouflage for pelvic regeneration. Applied Materials Today, 2019, 15, 570-581.	2.3	29
161	Examination of Alzheimer's disease by a combination of electrostatic force and mechanical measurement. Journal of Microscopy, 2019, 275, 66-72.	0.8	4

162 Tissue Regeneration: Bioinspired Hydrogel Electrospun Fibers for Spinal Cord Regeneration (Adv.) Tj ETQq0 0 0 rgB7./Overlock 10 Tf 50 0

#	Article	IF	CITATIONS
163	Photothermal-responsive nanosized hybrid polymersome as versatile therapeutics codelivery nanovehicle for effective tumor suppression. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7744-7749.	3.3	85

$Metal\hat{a} \in Based Stents: Endovascular Metal Devices for the Treatment of Cerebrovascular Diseases (Adv.) Tj ETQq0 0.0 rg BT / Overlock 10 Provide the term of t$

165	Selfâ€Healing: Selfâ€Healing and Injectable Hydrogel for Matching Skin Flap Regeneration (Adv. Sci. 3/2019). Advanced Science, 2019, 6, 1970019.	5.6	0
166	Self-Nanoemulsifying Electrospun Fiber Enhancing Drug Permeation. ACS Applied Materials & Interfaces, 2019, 11, 7836-7849.	4.0	21
167	Adhesive liposomes loaded onto an injectable, self-healing and antibacterial hydrogel for promoting bone reconstruction. NPG Asia Materials, 2019, 11, .	3.8	61
168	Endovascular Metal Devices for the Treatment of Cerebrovascular Diseases. Advanced Materials, 2019, 31, e1805452.	11.1	38
169	Advanced Collagenâ€Based Biomaterials for Regenerative Biomedicine. Advanced Functional Materials, 2019, 29, 1804943.	7.8	219
170	Enhanced Osteogenesis of Bone Marrowâ€Đerived Mesenchymal Stem Cells by a Functionalized Silk Fibroin Hydrogel for Bone Defect Repair. Advanced Healthcare Materials, 2019, 8, e1801043.	3.9	63
171	Gene Silencing via PDA/ERK2â€siRNAâ€Mediated Electrospun Fibers for Peritendinous Antiadhesion. Advanced Science, 2019, 6, 1801217.	5.6	39
172	Selfâ€Healing and Injectable Hydrogel for Matching Skin Flap Regeneration. Advanced Science, 2019, 6, 1801555.	5.6	140
173	Efficacy and safety evaluation of paclitaxel-loaded metal stents in patients with malignant biliary obstructions. European Journal of Surgical Oncology, 2019, 45, 816-819.	0.5	9
174	Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials, 2019, 190-191, 97-110.	5.7	345
175	Bioinspired Hydrogel Electrospun Fibers for Spinal Cord Regeneration. Advanced Functional Materials, 2019, 29, 1806899.	7.8	118
176	<i>Euryale Ferox</i> Seedâ€Inspired Superlubricated Nanoparticles for Treatment of Osteoarthritis. Advanced Functional Materials, 2019, 29, 1807559.	7.8	80
177	Multifunctional HA/Cu nano-coatings on titanium using PPy coordination and doping <i>via</i> pulse electrochemical polymerization. Biomaterials Science, 2018, 6, 575-585.	2.6	21
178	Accelerated fabrication of antibacterial and osteoinductive electrospun fibrous scaffolds <i>via</i> electrochemical deposition. RSC Advances, 2018, 8, 9546-9554.	1.7	17
179	Development of a biomimetic liver tumor-on-a-chip model based on decellularized liver matrix for toxicity testing. Lab on A Chip, 2018, 18, 3379-3392.	3.1	99

#	Article	IF	CITATIONS
181	Localized Controlled Delivery of Gemcitabine via Microsol Electrospun Fibers to Prevent Pancreatic Cancer Recurrence. Advanced Healthcare Materials, 2018, 7, e1800593.	3.9	35
182	Hydrogel fibrous scaffolds for accelerated wound healing. , 2018, , 251-274.		1
183	ECM Decorated Electrospun Nanofiber for Improving Bone Tissue Regeneration. Polymers, 2018, 10, 272.	2.0	37
184	Mechanically enhanced lipo-hydrogel with controlled release of multi-type drugs for bone regeneration. Applied Materials Today, 2018, 12, 294-308.	2.3	77
185	Electrospun nanosilicates-based organic/inorganic nanofibers for potential bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2018, 172, 90-97.	2.5	60
186	Adjustable hardness of hydrogel for promoting vascularization and maintaining stemness of stem cells in skin flap regeneration. Applied Materials Today, 2018, 13, 54-63.	2.3	42
187	Local release of gemcitabine via <i>in situ</i> UV-crosslinked lipid-strengthened hydrogel for inhibiting osteosarcoma. Drug Delivery, 2018, 25, 1642-1651.	2.5	37
188	An immunological electrospun scaffold for tumor cell killing and healthy tissue regeneration. Materials Horizons, 2018, 5, 1082-1091.	6.4	31
189	Fabrication of Antibacterial and Antiwear Hydroxyapatite Coatings via In Situ Chitosan-Mediated Pulse Electrochemical Deposition. ACS Applied Materials & Interfaces, 2017, 9, 5023-5030.	4.0	59
190	Macrophage infiltration of electrospun polyester fibers. Biomaterials Science, 2017, 5, 1579-1587.	2.6	32
191	Microfluidic Encapsulation of Prickly Zincâ€Doped Copper Oxide Nanoparticles with VD1142 Modified Spermine Acetalated Dextran for Efficient Cancer Therapy. Advanced Healthcare Materials, 2017, 6, 1601406.	3.9	38
192	Hierarchical Micro/Nanofibrous Bioscaffolds for Structural Tissue Regeneration. Advanced Healthcare Materials, 2017, 6, 1601457.	3.9	49
193	Biomaterials based strategies for rotator cuff repair. Colloids and Surfaces B: Biointerfaces, 2017, 157, 407-416.	2.5	42
194	The current status of biodegradable stent to treat benign luminal disease. Materials Today, 2017, 20, 516-529.	8.3	62
195	In vitro and in vivo combined antibacterial effect of levofloxacin/silver co-loaded electrospun fibrous membranes. Journal of Materials Chemistry B, 2017, 5, 7632-7643.	2.9	16
196	Flexible bipolar nanofibrous membranes for improving gradient microstructure in tendon-to-bone healing. Acta Biomaterialia, 2017, 61, 204-216.	4.1	104
197	Electrospun fibrous membranes featuring sustained release of ibuprofen reduce adhesion and improve neurological function following lumbar laminectomy. Journal of Controlled Release, 2017, 264, 1-13.	4.8	55
198	Inorganic Strengthened Hydrogel Membrane as Regenerative Periosteum. ACS Applied Materials & Interfaces, 2017, 9, 41168-41180.	4.0	126

#	Article	IF	CITATIONS
199	Advances in biomaterials for preventing tissue adhesion. Journal of Controlled Release, 2017, 261, 318-336.	4.8	115
200	In situ adjuvant therapy using a responsive doxorubicin-loaded fibrous scaffold after tumor resection. Colloids and Surfaces B: Biointerfaces, 2017, 158, 363-369.	2.5	13
201	Electrospun Photocrosslinkable Hydrogel Fibrous Scaffolds for Rapid In Vivo Vascularized Skin Flap Regeneration. Advanced Functional Materials, 2017, 27, 1604617.	7.8	154
202	Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomaterialia, 2017, 49, 66-77.	4.1	244
203	Fabrication of a Delaying Biodegradable Magnesium Alloy-Based Esophageal Stent via Coating Elastic Polymer. Materials, 2016, 9, 384.	1.3	27
204	Fabrication of Gelatin-Based Electrospun Composite Fibers for Anti-Bacterial Properties and Protein Adsorption. Marine Drugs, 2016, 14, 192.	2.2	24
205	Polymeric Biodegradable Stent Insertion in the Esophagus. Polymers, 2016, 8, 158.	2.0	10
206	Bionanofibers in drug delivery * *Xin Zhao and Lara Yildirimer contributed equally , 2016, , 403-445.		1
207	Quickly promoting angiogenesis by using a DFO-loaded photo-crosslinked gelatin hydrogel for diabetic skin regeneration. Journal of Materials Chemistry B, 2016, 4, 3770-3781.	2.9	90
208	Doxorubicin-loaded mesoporous silica nanoparticle composite nanofibers for long-term adjustments of tumor apoptosis. Nanotechnology, 2016, 27, 245101.	1.3	70
209	Fabrication of a photo-crosslinked gelatin hydrogel for preventing abdominal adhesion. RSC Advances, 2016, 6, 92449-92453.	1.7	16
210	Spatioâ€Design of Multidimensional Prickly Znâ€Doped CuO Nanoparticle for Efficient Bacterial Killing. Advanced Materials Interfaces, 2016, 3, 1600472.	1.9	29
211	Biomimetic Design of Mussel-Derived Bioactive Peptides for Dual-Functionalization of Titanium-Based Biomaterials. Journal of the American Chemical Society, 2016, 138, 15078-15086.	6.6	139
212	Microfluidicsâ€Assisted Osteogenesis: Injectable Stem Cell‣aden Photocrosslinkable Microspheres Fabricated Using Microfluidics for Rapid Generation of Osteogenic Tissue Constructs (Adv. Funct.) Tj ETQq0 0 0 i	g ₿1 8/Over	lo ck 10 Tf 50
213	Injectable Stem Cellâ€Laden Photocrosslinkable Microspheres Fabricated Using Microfluidics for Rapid Generation of Osteogenic Tissue Constructs. Advanced Functional Materials, 2016, 26, 2809-2819.	7.8	309
214	Upregulating Hifâ€1α by Hydrogel Nanofibrous Scaffolds for Rapidly Recruiting Angiogenesis Relative Cells in Diabetic Wound. Advanced Healthcare Materials, 2016, 5, 907-918.	3.9	110
215	Release of celecoxib from a bi-layer biomimetic tendon sheath to prevent tissue adhesion. Materials Science and Engineering C, 2016, 61, 220-226.	3.8	46
216	Two-dimensional electrospun nanofibrous membranes for promoting random skin flap survival. RSC Advances, 2016, 6, 9360-9369.	1.7	21

#	Article	IF	CITATIONS
217	Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars. Biomaterials, 2016, 83, 169-181.	5.7	122
218	Reinforcement of transvaginal repair using polypropylene mesh functionalized with basic fibroblast growth factor. Colloids and Surfaces B: Biointerfaces, 2016, 142, 10-19.	2.5	16
219	Fabrication and evaluation of polymer-based esophageal stents for benign esophagus stricture insertion. RSC Advances, 2016, 6, 16891-16898.	1.7	6
220	Nanogel-electrospinning for controlling the release of water-soluble drugs. Journal of Materials Chemistry B, 2016, 4, 2171-2178.	2.9	6
221	Culturing on decellularized extracellular matrix enhances antioxidant properties of human umbilical cord-derived mesenchymal stem cells. Materials Science and Engineering C, 2016, 61, 437-448.	3.8	45
222	Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 108-118.	3.9	595
223	Electrospun Biodegradable Polyester Micro-/Nanofibers for Drug Delivery and Their Clinical Applications. , 2016, , 125-158.		0
224	Integrated therapy on residual tumor after palliative operation using dual-phase drug releasing electrospun fibrous scaffolds. Journal of Controlled Release, 2015, 213, e151-e152.	4.8	3
225	Rg3-loaded biodegradable composite electrospun fibers for long-term inhibition of hypertrophic scarring. Journal of Controlled Release, 2015, 213, e118.	4.8	1
226	Pomegranateâ€&tructured Electrosprayed Microspheres for Longâ€Term Controlled Drug Release. Particle and Particle Systems Characterization, 2015, 32, 529-535.	1.2	21
227	Melatonin reverses H ₂ O ₂ â€induced premature senescence in mesenchymal stem cells via the <scp>SIRT</scp> 1â€dependent pathway. Journal of Pineal Research, 2015, 59, 190-205.	3.4	127
228	Tumorâ€Triggered Controlled Drug Release from Electrospun Fibers Using Inorganic Caps for Inhibiting Cancer Relapse. Small, 2015, 11, 4284-4291.	5.2	79
229	Saccharides and temperature dual-responsive hydrogel layers for harvesting cell sheets. Chemical Communications, 2015, 51, 644-647.	2.2	51
230	Optimization of intrinsic and extrinsic tendon healing through controllable water-soluble mitomycin-C release from electrospun fibers by mediating adhesion-related gene expression. Biomaterials, 2015, 61, 61-74.	5.7	95
231	Correction: A hierarchical, stretchable and stiff fibrous biotemplate engineered using stagger-electrospinning for augmentation of rotator cuff tendon-healing. Journal of Materials Chemistry B, 2015, 3, 2012-2012.	2.9	4
232	Disease-triggered hydrogel therapy. Materials Today, 2015, 18, 56-57.	8.3	11
233	A hierarchical, stretchable and stiff fibrous biotemplate engineered using stagger-electrospinning for augmentation of rotator cuff tendon-healing. Journal of Materials Chemistry B, 2015, 3, 990-1000.	2.9	30
234	Self-coated interfacial layer at organic/inorganic phase for temporally controlling dual-drug delivery from electrospun fibers. Colloids and Surfaces B: Biointerfaces, 2015, 130, 1-9.	2.5	60

#	Article	IF	CITATIONS
235	Full-course inhibition of biodegradation-induced inflammation inÂfibrous scaffold by loading enzyme-sensitive prodrug. Biomaterials, 2015, 53, 202-210.	5.7	34
236	Synergistic mediation of tumor signaling pathways in hepatocellular carcinoma therapy via dual-drug-loaded pH-responsive electrospun fibrous scaffolds. Journal of Materials Chemistry B, 2015, 3, 3436-3446.	2.9	30
237	Long-term release of water-soluble drugs using microsol-electrospun nanofiber sheets. Journal of Controlled Release, 2015, 213, e10.	4.8	2
238	Healing improvement after rotator cuff repair using gelatin-grafted poly(L-lactide) electrospun fibrous membranes. Journal of Surgical Research, 2015, 193, 33-42.	0.8	36
239	In Vivo Early Intervention and the Therapeutic Effects of 20(S)-Ginsenoside Rg3 on Hypertrophic Scar Formation. PLoS ONE, 2014, 9, e113640.	1.1	17
240	Biological augmentation of rotator cuff repair using bFGF-loaded electrospun poly(lactide-co-glycolide) fibrous membranes. International Journal of Nanomedicine, 2014, 9, 2373.	3.3	104
241	Tumor cell-activated CARD9 signaling contributes to metastasis-associated macrophage polarization. Cell Death and Differentiation, 2014, 21, 1290-1302.	5.0	44
242	Silver Nanoparticles/Ibuprofen-Loaded Poly(I-lactide) Fibrous Membrane: Anti-Infection and Anti-Adhesion Effects. International Journal of Molecular Sciences, 2014, 15, 14014-14025.	1.8	33
243	Regulating Inflammation Using Acid-Responsive Electrospun Fibrous Scaffolds for Skin Scarless Healing. Mediators of Inflammation, 2014, 2014, 1-11.	1.4	25
244	Fabrication of Acid-Responsive Electrospun Fibers via Doping Sodium Bicarbonate for Quick Releasing Drug. Nanoscience and Nanotechnology Letters, 2014, 6, 339-345.	0.4	5
245	Evaluation of oriented electrospun fibers for periosteal flap regeneration in biomimetic triphasic osteochondral implant. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1407-1414.	1.6	30
246	Use of ginsenoside Rg3-loaded electrospun PLGA fibrous membranes as wound cover induces healing and inhibits hypertrophic scar formation of the skin. Colloids and Surfaces B: Biointerfaces, 2014, 115, 61-70.	2.5	61
247	Electrospun nanofibrous scaffolds of poly (l-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration. Materials Science and Engineering C, 2014, 35, 426-433.	3.8	39
248	In vitro and in vivo evaluation of Rapamycin-eluting nanofibers coated on cardia stents. RSC Advances, 2014, 4, 34405-34411.	1.7	10
249	Microsol-electrospinning for controlled loading and release of water-soluble drugs in microfibrous membranes. RSC Advances, 2014, 4, 43220-43226.	1.7	16
250	bFGF-grafted electrospun fibrous scaffolds via poly(dopamine) for skin wound healing. Journal of Materials Chemistry B, 2014, 2, 3636-3645.	2.9	102
251	Ibuprofen-loaded electrospun fibrous scaffold doped with sodium bicarbonate for responsively inhibiting inflammation and promoting muscle wound healing in vivo. Biomaterials Science, 2014, 2, 502-511.	2.6	46
252	Smart electrospun fibrous scaffolds inhibit tumor cells and promote normal cell proliferation. RSC Advances, 2014, 4, 51696-51702.	1.7	9

#	Article	IF	CITATIONS
253	Dynamic Introduction of Cell Adhesive Factor via Reversible Multicovalent Phenylboronic Acid/ <i>cis</i> -Diol Polymeric Complexes. Journal of the American Chemical Society, 2014, 136, 6203-6206.	6.6	120
254	Down-regulating ERK1/2 and SMAD2/3 phosphorylation by physical barrier of celecoxib-loaded electrospun fibrous membranes prevents tendon adhesions. Biomaterials, 2014, 35, 9920-9929.	5.7	94
255	Extracellular matrix modulates the biological effects of melatonin in mesenchymal stem cells. Journal of Endocrinology, 2014, 223, 167-180.	1.2	34
256	Highly flexible and rapidly degradable papaverine-loaded electrospun fibrous membranes for preventing vasospasm and repairing vascular tissue. Acta Biomaterialia, 2014, 10, 3018-3028.	4.1	22
257	Promotion of initial anti-tumor effect via polydopamine modified doxorubicin-loaded electrospun fibrous membranes. International Journal of Clinical and Experimental Pathology, 2014, 7, 5436-49.	0.5	2
258	Fabrication of patterned PDLLA/PCL composite scaffold by electrospinning. Journal of Applied Polymer Science, 2013, 127, 1550-1554.	1.3	28
259	Long-term drug release from electrospun fibers for in vivo inflammation prevention in the prevention of peritendinous adhesions. Acta Biomaterialia, 2013, 9, 7381-7388.	4.1	122
260	Biodegradable electrospun PLLA/chitosan membrane as guided tissue regeneration membrane for treating periodontitis. Journal of Materials Science, 2013, 48, 6567-6577.	1.7	55
261	Microâ€∕Nanometer Rough Structure of a Superhydrophobic Biodegradable Coating by Electrospraying for Initial Antiâ€Bioadhesion. Advanced Healthcare Materials, 2013, 2, 1314-1321.	3.9	63
262	Antibacterial antiadhesion membranes from silverâ€nanoparticleâ€doped electrospun poly(<scp>L</scp> ″actide) nanofibers. Journal of Applied Polymer Science, 2013, 129, 3459-3465.	1.3	22
263	A highly flexible paclitaxel-loaded poly(ε-caprolactone) electrospun fibrous-membrane-covered stent for benign cardia stricture. Acta Biomaterialia, 2013, 9, 8328-8336.	4.1	58
264	In vivo inhibition of hypertrophic scars by implantable ginsenoside-Rg3-loaded electrospun fibrous membranes. Acta Biomaterialia, 2013, 9, 9461-9473.	4.1	34
265	Electrospun Ginsenoside Rg3/poly(lactic-co-glycolic acid) fibers coated with hyaluronic acid for repairing and inhibiting hypertrophic scars. Journal of Materials Chemistry B, 2013, 1, 4428.	2.9	31
266	Antibacterial and anti-adhesion effects of the silver nanoparticles-loaded poly(l-lactide) fibrous membrane. Materials Science and Engineering C, 2013, 33, 1176-1182.	3.8	62
267	Tendon healing and anti-adhesion properties of electrospun fibrous membranes containing bFGF loaded nanoparticles. Biomaterials, 2013, 34, 4690-4701.	5.7	139
268	Fabrication and surface characterization of electrosprayed poly(<scp>L</scp> â€lactide) microspheres. Journal of Applied Polymer Science, 2013, 128, 3177-3183.	1.3	9
269	Biodegradable rapamycin-eluting nano-fiber membrane-covered metal stent placement to reduce fibroblast proliferation in experimental stricture in a canine model. Endoscopy, 2013, 45, 458-468.	1.0	19

Prevention of Peritendinous Adhesions with Electrospun Ibuprofen-Loaded Poly(<scp>l</scp>-Lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 106 Poly(<scp>l</scp>-Lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 106 Poly(<scp>l</scp>-Lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 106 Poly(<scp>l</scp>-Lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 106 Poly(<scp>l</scp>-Lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 106 Poly(<scp>l</scp>-Lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 106 Poly(<scp>l</scp>-Lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 106 Poly(<scp>l</scp>-Lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 106 Poly(<scp>l</scp>-Lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 106 Poly(<scp>l</scp>-Lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 106 Poly(<scp>l</scp>-Lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 106 Poly(<scp>l</scp>-Lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 106 Poly(<scp>l</scp>-Lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 106 Poly(<scp>l</scp>-Lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 106 Poly(<scp>l</scp>-Lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 106 Poly(<scp>l</scp>-Lactic) Tj ETQq0 0 Poly(<scp>l</scp>-Lactic) Tj ETQq0 0 Poly(<scp>l</scp>-Lactic) Tj ETQq0 Poly(<scp>l</scp>-Lactic) Tj

#	Article	IF	CITATIONS
271	Electrospun Poly(L-Lactide) Fiber with Ginsenoside Rg3 for Inhibiting Scar Hyperplasia of Skin. PLoS ONE, 2013, 8, e68771.	1.1	41
272	Biomimetic Sheath Membrane via Electrospinning for Antiadhesion of Repaired Tendon. Biomacromolecules, 2012, 13, 3611-3619.	2.6	83
273	Hierarchical Structure of Electrospun Composite Fibers for Longâ€Term Controlled Drug Release Carriers. Advanced Healthcare Materials, 2012, 1, 809-814.	3.9	73
274	Preparation of hydrophilic poly(l-lactide) electrospun fibrous scaffolds modified with chitosan for enhanced cell biocompatibility. Polymer, 2012, 53, 2298-2305.	1.8	85
275	Reduced Risk of Colorectal Cancer With Metformin Therapy in Patients With Type 2 Diabetes. Diabetes Care, 2011, 34, 2323-2328.	4.3	255
276	Fibrous Composites With Anisotropic Distribution of Mechanical Properties After Layerâ€by‣ayer Deposition of Aligned Electrospun Fibers. Advanced Engineering Materials, 2010, 12, B529.	1.6	13
277	Controllable growth of hydroxyapatite on electrospun poly(dl-lactide) fibers grafted with chitosan as potential tissue engineering scaffolds. Polymer, 2010, 51, 2320-2328.	1.8	49
278	Release modulation and cytotoxicity of hydroxycamptothecin-loaded electrospun fibers with 2-hydroxypropyl-β-cyclodextrin inoculations. International Journal of Pharmaceutics, 2010, 391, 55-64.	2.6	58
279	Hydroxyapatite nucleation and growth mechanism on electrospun fibers functionalized with different chemical groups and their combinations. Biomaterials, 2010, 31, 4620-4629.	5.7	155
280	Electrospun Composite Mats of Poly[(<scp>D,L</scp> â€lactide) <i>â€coâ€</i> glycolide] and Collagen with High Porosity as Potential Scaffolds for Skin Tissue Engineering. Macromolecular Materials and Engineering, 2009, 294, 611-619.	1.7	86
281	Evaluation of electrospun fibrous scaffolds of poly(dl-lactide) and poly(ethylene glycol) for skin tissue engineering. Materials Science and Engineering C, 2009, 29, 1869-1876.	3.8	122
282	Electrospun fibers of acid-labile biodegradable polymers with acetal groups as potential drug carriers. International Journal of Pharmaceutics, 2008, 361, 47-55.	2.6	65
283	Electrospun Fibrous Mats with High Porosity as Potential Scaffolds for Skin Tissue Engineering. Biomacromolecules, 2008, 9, 1795-1801.	2.6	343
284	In Situ Growth Kinetics of Hydroxyapatite on Electrospun Poly(<scp>dl</scp> -lactide) Fibers with Gelatin Grafted. Crystal Growth and Design, 2008, 8, 4576-4582.	1.4	56
285	Preparation and Characterization of a Novel Electrospun Spider Silk Fibroin/Poly(<scp>d</scp> , <scp>l</scp> -lactide) Composite Fiber. Journal of Physical Chemistry B, 2008, 112, 11209-11216.	1.2	91
286	Investigation on process parameters of electrospinning system through orthogonal experimental design. Journal of Applied Polymer Science, 2007, 103, 3105-3112.	1.3	282
287	In situ growth of hydroxyapatite within electrospun poly(DL-lactide) fibers. Journal of Biomedical Materials Research - Part A, 2007, 82A, 831-841.	2.1	68
288	Investigation of Drug Release and Matrix Degradation of Electrospun Poly(dl-lactide) Fibers with Paracetanol Inoculation. Biomacromolecules, 2006, 7, 1623-1629.	2.6	318

#	Article	IF	CITATIONS
289	Differential Tumor Necrosis Factor Alpha Expression and Release from Peritoneal Mouse Macrophages In Vitro in Response to Proliferating Gram-Positive versus Gram-Negative Bacteria. Infection and Immunity, 2000, 68, 4422-4429.	1.0	23