Wenguo Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5716563/publications.pdf

Version: 2024-02-01

289 papers 15,430 citations

65 h-index 29157 104 g-index

309 all docs

309 docs citations

309 times ranked 14310 citing authors

#	Article	IF	CITATIONS
1	Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 108-118.	7.6	595
2	Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials, 2019, 190-191, 97-110.	11.4	345
3	Electrospun Fibrous Mats with High Porosity as Potential Scaffolds for Skin Tissue Engineering. Biomacromolecules, 2008, 9, 1795-1801.	5.4	343
4	Investigation of Drug Release and Matrix Degradation of Electrospun Poly(dl-lactide) Fibers with Paracetanol Inoculation. Biomacromolecules, 2006, 7, 1623-1629.	5.4	318
5	Injectable Stem Cellâ€Laden Photocrosslinkable Microspheres Fabricated Using Microfluidics for Rapid Generation of Osteogenic Tissue Constructs. Advanced Functional Materials, 2016, 26, 2809-2819.	14.9	309
6	Investigation on process parameters of electrospinning system through orthogonal experimental design. Journal of Applied Polymer Science, 2007, 103, 3105-3112.	2.6	282
7	An injectable self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic skin wound repair. NPG Asia Materials, 2019, $11,\dots$	7.9	260
8	Reduced Risk of Colorectal Cancer With Metformin Therapy in Patients With Type 2 Diabetes. Diabetes Care, 2011, 34, 2323-2328.	8.6	255
9	Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomaterialia, 2017, 49, 66-77.	8.3	244
10	Advanced Collagenâ€Based Biomaterials for Regenerative Biomedicine. Advanced Functional Materials, 2019, 29, 1804943.	14.9	219
11	Injectable Polypeptideâ€Protein Hydrogels for Promoting Infected Wound Healing. Advanced Functional Materials, 2020, 30, 2001196.	14.9	186
12	Hierarchical micro/nanofibrous membranes of sustained releasing VEGF for periosteal regeneration. Biomaterials, 2020, 227, 119555.	11.4	185
13	Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Advanced Drug Delivery Reviews, 2021, 174, 504-534.	13.7	163
14	Hydroxyapatite nucleation and growth mechanism on electrospun fibers functionalized with different chemical groups and their combinations. Biomaterials, 2010, 31, 4620-4629.	11.4	155
15	Electrospun Photocrosslinkable Hydrogel Fibrous Scaffolds for Rapid In Vivo Vascularized Skin Flap Regeneration. Advanced Functional Materials, 2017, 27, 1604617.	14.9	154
16	Selfâ€Healing and Injectable Hydrogel for Matching Skin Flap Regeneration. Advanced Science, 2019, 6, 1801555.	11.2	140
17	Tendon healing and anti-adhesion properties of electrospun fibrous membranes containing bFGF loaded nanoparticles. Biomaterials, 2013, 34, 4690-4701.	11.4	139
18	Biomimetic Design of Mussel-Derived Bioactive Peptides for Dual-Functionalization of Titanium-Based Biomaterials. Journal of the American Chemical Society, 2016, 138, 15078-15086.	13.7	139

#	Article	IF	Citations
19	Capturing Magnesium Ions <i>via</i> Microfluidic Hydrogel Microspheres for Promoting Cancellous Bone Regeneration. ACS Nano, 2021, 15, 13041-13054.	14.6	133
20	Melatonin reverses H ₂ O ₂ â€induced premature senescence in mesenchymal stem cells via the <scp>SIRT</scp> 1â€dependent pathway. Journal of Pineal Research, 2015, 59, 190-205.	7.4	127
21	Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials, 2020, 232, 119706.	11.4	127
22	Microenvironment-responsive immunoregulatory electrospun fibers for promoting nerve function recovery. Nature Communications, 2020, 11, 4504.	12.8	127
23	Inorganic Strengthened Hydrogel Membrane as Regenerative Periosteum. ACS Applied Materials & Samp; Interfaces, 2017, 9, 41168-41180.	8.0	126
24	Evaluation of electrospun fibrous scaffolds of poly(dl-lactide) and poly(ethylene glycol) for skin tissue engineering. Materials Science and Engineering C, 2009, 29, 1869-1876.	7.3	122
25	Long-term drug release from electrospun fibers for in vivo inflammation prevention in the prevention of peritendinous adhesions. Acta Biomaterialia, 2013, 9, 7381-7388.	8.3	122
26	Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars. Biomaterials, 2016, 83, 169-181.	11.4	122
27	Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis. Bioactive Materials, 2021, 6, 3596-3607.	15.6	122
28	Dynamic Introduction of Cell Adhesive Factor via Reversible Multicovalent Phenylboronic Acid/ <i>cis</i> -Diol Polymeric Complexes. Journal of the American Chemical Society, 2014, 136, 6203-6206.	13.7	120
29	Bioinspired Hydrogel Electrospun Fibers for Spinal Cord Regeneration. Advanced Functional Materials, 2019, 29, 1806899.	14.9	118
30	Injectable Microfluidic Hydrogel Microspheres for Cell and Drug Delivery. Advanced Functional Materials, 2021, 31, 2103339.	14.9	117
31	Advances in biomaterials for preventing tissue adhesion. Journal of Controlled Release, 2017, 261, 318-336.	9.9	115
32	Gelatin Templated Polypeptide Coâ€Crossâ€Linked Hydrogel for Bone Regeneration. Advanced Healthcare Materials, 2020, 9, e1901239.	7.6	112
33	Upregulating Hifâ€1α by Hydrogel Nanofibrous Scaffolds for Rapidly Recruiting Angiogenesis Relative Cells in Diabetic Wound. Advanced Healthcare Materials, 2016, 5, 907-918.	7.6	110
34	Biologically modified nanoparticles as theranostic bionanomaterials. Progress in Materials Science, 2021, 118, 100768.	32.8	108
35	Prevention of Peritendinous Adhesions with Electrospun Ibuprofen-Loaded Poly(<scp>l</scp> -Lactic) Tj ETQq1 1	. 0.784314 . 3.1	rgBT/Over
36	Functional Electrospun Fibers for Local Therapy of Cancer. Advanced Fiber Materials, 2020, 2, 229-245.	16.1	105

#	Article	IF	Citations
37	Biological augmentation of rotator cuff repair using bFGF-loaded electrospun poly(lactide-co-glycolide) fibrous membranes. International Journal of Nanomedicine, 2014, 9, 2373.	6.7	104
38	Flexible bipolar nanofibrous membranes for improving gradient microstructure in tendon-to-bone healing. Acta Biomaterialia, 2017, 61, 204-216.	8.3	104
39	Metal Species–Encapsulated Mesoporous Silica Nanoparticles: Current Advancements and Latest Breakthroughs. Advanced Functional Materials, 2019, 29, 1902652.	14.9	104
40	Bone remodeling-inspired dual delivery electrospun nanofibers for promoting bone regeneration. Nanoscale, 2019, 11, 60-71.	5.6	103
41	bFGF-grafted electrospun fibrous scaffolds via poly(dopamine) for skin wound healing. Journal of Materials Chemistry B, 2014, 2, 3636-3645.	5.8	102
42	Modulation of Local Overactive Inflammation via Injectable Hydrogel Microspheres. Nano Letters, 2021, 21, 2690-2698.	9.1	101
43	Development of a biomimetic liver tumor-on-a-chip model based on decellularized liver matrix for toxicity testing. Lab on A Chip, 2018, 18, 3379-3392.	6.0	99
44	Optimization of intrinsic and extrinsic tendon healing through controllable water-soluble mitomycin-C release from electrospun fibers by mediating adhesion-related gene expression. Biomaterials, 2015, 61, 61-74.	11.4	95
45	Down-regulating ERK1/2 and SMAD2/3 phosphorylation by physical barrier of celecoxib-loaded electrospun fibrous membranes prevents tendon adhesions. Biomaterials, 2014, 35, 9920-9929.	11.4	94
46	Microfluidic liposomes-anchored microgels as extended delivery platform for treatment of osteoarthritis. Chemical Engineering Journal, 2020, 400, 126004.	12.7	94
47	Preparation and Characterization of a Novel Electrospun Spider Silk Fibroin/Poly(<scp>d</scp> , <scp>l</scp> -lactide) Composite Fiber. Journal of Physical Chemistry B, 2008, 112, 11209-11216.	2.6	91
48	Colonâ€Targeted Adhesive Hydrogel Microsphere for Regulation of Gut Immunity and Flora. Advanced Science, 2021, 8, e2101619.	11.2	91
49	Quickly promoting angiogenesis by using a DFO-loaded photo-crosslinked gelatin hydrogel for diabetic skin regeneration. Journal of Materials Chemistry B, 2016, 4, 3770-3781.	5.8	90
50	Injectable hydrogel microspheres with self-renewable hydration layers alleviate osteoarthritis. Science Advances, 2022, 8, eabl6449.	10.3	90
51	Electrospun Composite Mats of Poly[(<scp>D,L</scp> â€lactide) <i>â€coâ€</i> glycolide] and Collagen with High Porosity as Potential Scaffolds for Skin Tissue Engineering. Macromolecular Materials and Engineering, 2009, 294, 611-619.	3.6	86
52	Preparation of hydrophilic poly(l-lactide) electrospun fibrous scaffolds modified with chitosan for enhanced cell biocompatibility. Polymer, 2012, 53, 2298-2305.	3.8	85
53	Photothermal-responsive nanosized hybrid polymersome as versatile therapeutics codelivery nanovehicle for effective tumor suppression. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7744-7749.	7.1	85
54	Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration. Biomaterials, 2021, 276, 121037.	11.4	85

#	Article	IF	Citations
55	Biomimetic Sheath Membrane via Electrospinning for Antiadhesion of Repaired Tendon. Biomacromolecules, 2012, 13, 3611-3619.	5.4	83
56	Gradient bimetallic ion–based hydrogels for tissue microstructure reconstruction of tendon-to-bone insertion. Science Advances, 2021, 7, .	10.3	83
57	Advanced electrospun hydrogel fibers for wound healing. Composites Part B: Engineering, 2021, 223, 109101.	12.0	81
58	<i>Euryale Ferox</i> Seedâ€Inspired Superlubricated Nanoparticles for Treatment of Osteoarthritis. Advanced Functional Materials, 2019, 29, 1807559.	14.9	80
59	Tumorâ€Triggered Controlled Drug Release from Electrospun Fibers Using Inorganic Caps for Inhibiting Cancer Relapse. Small, 2015, 11, 4284-4291.	10.0	79
60	ECM-inspired micro/nanofibers for modulating cell function and tissue generation. Science Advances, 2020, 6, .	10.3	78
61	Microenvironmentâ€Protected Exosomeâ€Hydrogel for Facilitating Endometrial Regeneration, Fertility Restoration, and Live Birth of Offspring. Small, 2021, 17, e2007235.	10.0	78
62	Mechanically enhanced lipo-hydrogel with controlled release of multi-type drugs for bone regeneration. Applied Materials Today, 2018, 12, 294-308.	4.3	77
63	Cartilage matrix-inspired biomimetic superlubricated nanospheres for treatment of osteoarthritis. Biomaterials, 2020, 242, 119931.	11.4	77
64	Endogenous Electricâ€Fieldâ€Coupled Electrospun Short Fiber via Collecting Wound Exudation. Advanced Materials, 2022, 34, e2108325.	21.0	75
65	Hierarchical Structure of Electrospun Composite Fibers for Longâ€Term Controlled Drug Release Carriers. Advanced Healthcare Materials, 2012, 1, 809-814.	7.6	7 3
66	Ballâ€Bearingâ€Inspired Polyampholyteâ€Modified Microspheres as Bioâ€Lubricants Attenuate Osteoarthritis. Small, 2020, 16, e2004519.	10.0	73
67	Stem cell-laden injectable hydrogel microspheres for cancellous bone regeneration. Chemical Engineering Journal, 2020, 393, 124715.	12.7	71
68	Doxorubicin-loaded mesoporous silica nanoparticle composite nanofibers for long-term adjustments of tumor apoptosis. Nanotechnology, 2016, 27, 245101.	2.6	70
69	Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair. Bioactive Materials, 2021, 6, 1639-1652.	15.6	70
70	In situ growth of hydroxyapatite within electrospun poly(DL-lactide) fibers. Journal of Biomedical Materials Research - Part A, 2007, 82A, 831-841.	4.0	68
71	Advanced Biomaterials for Regulating Polarization of Macrophages in Wound Healing. Advanced Functional Materials, 2022, 32, .	14.9	68
72	Advanced biomaterials for repairing and reconstruction of mandibular defects. Materials Science and Engineering C, 2019, 103, 109858.	7.3	67

#	Article	IF	CITATIONS
73	Geneâ€Hydrogel Microenvironment Regulates Extracellular Matrix Metabolism Balance in Nucleus Pulposus. Advanced Science, 2020, 7, 1902099.	11.2	67
74	Biomimetic organic-inorganic hybrid hydrogel electrospinning periosteum for accelerating bone regeneration. Materials Science and Engineering C, 2020, 110, 110670.	7.3	67
75	Engineering immunomodulatory and osteoinductive implant surfaces via mussel adhesion-mediated ion coordination and molecular clicking. Nature Communications, 2022, 13, 160.	12.8	66
76	Electrospun fibers of acid-labile biodegradable polymers with acetal groups as potential drug carriers. International Journal of Pharmaceutics, 2008, 361, 47-55.	5.2	65
77	Programmed Sustained Release of Recombinant Human Bone Morphogenetic Protein-2 and Inorganic Ion Composite Hydrogel as Artificial Periosteum. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6840-6851.	8.0	64
78	Hydration-Enhanced Lubricating Electrospun Nanofibrous Membranes Prevent Tissue Adhesion. Research, 2020, 2020, 4907185.	5.7	64
79	Microâ€/Nanometer Rough Structure of a Superhydrophobic Biodegradable Coating by Electrospraying for Initial Antiâ€Bioadhesion. Advanced Healthcare Materials, 2013, 2, 1314-1321.	7.6	63
80	Enhanced Osteogenesis of Bone Marrowâ€Derived Mesenchymal Stem Cells by a Functionalized Silk Fibroin Hydrogel for Bone Defect Repair. Advanced Healthcare Materials, 2019, 8, e1801043.	7.6	63
81	Photo-crosslinkable amniotic membrane hydrogel for skin defect healing. Acta Biomaterialia, 2021, 125, 197-207.	8.3	63
82	Chargeâ€Guided Micro/Nanoâ€Hydrogel Microsphere for Penetrating Cartilage Matrix. Advanced Functional Materials, 2021, 31, 2107678.	14.9	63
83	Antibacterial and anti-adhesion effects of the silver nanoparticles-loaded poly(l-lactide) fibrous membrane. Materials Science and Engineering C, 2013, 33, 1176-1182.	7.3	62
84	The current status of biodegradable stent to treat benign luminal disease. Materials Today, 2017, 20, 516-529.	14.2	62
85	Use of ginsenoside Rg3-loaded electrospun PLGA fibrous membranes as wound cover induces healing and inhibits hypertrophic scar formation of the skin. Colloids and Surfaces B: Biointerfaces, 2014, 115, 61-70.	5.0	61
86	Adhesive liposomes loaded onto an injectable, self-healing and antibacterial hydrogel for promoting bone reconstruction. NPG Asia Materials, 2019, 11, .	7.9	61
87	Self-coated interfacial layer at organic/inorganic phase for temporally controlling dual-drug delivery from electrospun fibers. Colloids and Surfaces B: Biointerfaces, 2015, 130, 1-9.	5.0	60
88	Electrospun nanosilicates-based organic/inorganic nanofibers for potential bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2018, 172, 90-97.	5.0	60
89	Black phosphorus-based 2D materials for bone therapy. Bioactive Materials, 2020, 5, 1026-1043.	15.6	60
90	Fabrication of Antibacterial and Antiwear Hydroxyapatite Coatings via In Situ Chitosan-Mediated Pulse Electrochemical Deposition. ACS Applied Materials & Electrochemical Deposition. ACS Applied Materials & Electrochemical Deposition.	8.0	59

#	Article	IF	Citations
91	Release modulation and cytotoxicity of hydroxycamptothecin-loaded electrospun fibers with 2-hydroxypropyl-Î ² -cyclodextrin inoculations. International Journal of Pharmaceutics, 2010, 391, 55-64.	5.2	58
92	A highly flexible paclitaxel-loaded poly($\hat{l}\mu$ -caprolactone) electrospun fibrous-membrane-covered stent for benign cardia stricture. Acta Biomaterialia, 2013, 9, 8328-8336.	8.3	58
93	Bioinspired Hyaluronic Acid/Phosphorylcholine Polymer with Enhanced Lubrication and Anti-Inflammation. Biomacromolecules, 2019, 20, 4135-4142.	5.4	58
94	Injectable "nano-micron―combined gene-hydrogel microspheres for local treatment of osteoarthritis. NPG Asia Materials, 2022, 14, .	7.9	58
95	Bioinspired Functional Black Phosphorus Electrospun Fibers Achieving Recruitment and Biomineralization for Staged Bone Regeneration. Small, 2020, 16, e2005433.	10.0	57
96	In Situ Growth Kinetics of Hydroxyapatite on Electrospun Poly(<scp>dl</scp> -lactide) Fibers with Gelatin Grafted. Crystal Growth and Design, 2008, 8, 4576-4582.	3.0	56
97	Biodegradable electrospun PLLA/chitosan membrane as guided tissue regeneration membrane for treating periodontitis. Journal of Materials Science, 2013, 48, 6567-6577.	3.7	55
98	Electrospun fibrous membranes featuring sustained release of ibuprofen reduce adhesion and improve neurological function following lumbar laminectomy. Journal of Controlled Release, 2017, 264, 1-13.	9.9	55
99	Biomedical application of photo-crosslinked gelatin hydrogels. Journal of Leather Science and Engineering, 2021, 3, .	6.0	54
100	Biomaterial-based delivery of nucleic acids for tissue regeneration. Advanced Drug Delivery Reviews, 2021, 176, 113885.	13.7	53
101	An orthobiologics-free strategy for synergistic photocatalytic antibacterial and osseointegration. Biomaterials, 2021, 274, 120853.	11.4	52
102	Saccharides and temperature dual-responsive hydrogel layers for harvesting cell sheets. Chemical Communications, 2015, 51, 644-647.	4.1	51
103	An electrospun fiber-covered stent with programmable dual drug release for endothelialization acceleration and lumen stenosis prevention. Acta Biomaterialia, 2019, 94, 295-305.	8.3	50
104	Controllable growth of hydroxyapatite on electrospun poly(dl-lactide) fibers grafted with chitosan as potential tissue engineering scaffolds. Polymer, 2010, 51, 2320-2328.	3.8	49
105	Hierarchical Micro/Nanofibrous Bioscaffolds for Structural Tissue Regeneration. Advanced Healthcare Materials, 2017, 6, 1601457.	7.6	49
106	Fullerol-hydrogel microfluidic spheres for in situ redox regulation of stem cell fate and refractory bone healing. Bioactive Materials, 2021, 6, 4801-4815.	15.6	49
107	Stem Cellâ€Recruiting Injectable Microgels for Repairing Osteoarthritis. Advanced Functional Materials, 2021, 31, 2105084.	14.9	48
108	Openâ€Shell Nanosensitizers for Glutathione Responsive Cancer Sonodynamic Therapy. Advanced Materials, 2022, 34, e2110283.	21.0	48

#	Article	IF	Citations
109	Ibuprofen-loaded electrospun fibrous scaffold doped with sodium bicarbonate for responsively inhibiting inflammation and promoting muscle wound healing in vivo. Biomaterials Science, 2014, 2, 502-511.	5.4	46
110	Release of celecoxib from a bi-layer biomimetic tendon sheath to prevent tissue adhesion. Materials Science and Engineering C, 2016, 61, 220-226.	7. 3	46
111	A Biomimetic 3Dâ€Selfâ€Forming Approach for Microvascular Scaffolds. Advanced Science, 2020, 7, 1903553.	11.2	46
112	Culturing on decellularized extracellular matrix enhances antioxidant properties of human umbilical cord-derived mesenchymal stem cells. Materials Science and Engineering C, 2016, 61, 437-448.	7.3	45
113	Tissue-specific engineering: 3D bioprinting in regenerative medicine. Journal of Controlled Release, 2021, 329, 237-256.	9.9	45
114	Tumor cell-activated CARD9 signaling contributes to metastasis-associated macrophage polarization. Cell Death and Differentiation, 2014, 21, 1290-1302.	11.2	44
115	Cell Membrane-Inspired Polymeric Vesicles for Combined Photothermal and Photodynamic Prostate Cancer Therapy. ACS Applied Materials & Interfaces, 2020, 12, 42511-42520.	8.0	43
116	Conditioned medium-electrospun fiber biomaterials for skin regeneration. Bioactive Materials, 2021, 6, 361-374.	15.6	43
117	Electrospun fibrous sponge via short fiber for mimicking 3D ECM. Journal of Nanobiotechnology, 2021, 19, 131.	9.1	43
118	Secretory Fluidâ€Aggregated Janus Electrospun Short Fiber Scaffold for Wound Healing. Small, 2022, 18, e2200799.	10.0	43
119	Biomaterials based strategies for rotator cuff repair. Colloids and Surfaces B: Biointerfaces, 2017, 157, 407-416.	5.0	42
120	Adjustable hardness of hydrogel for promoting vascularization and maintaining stemness of stem cells in skin flap regeneration. Applied Materials Today, 2018, 13, 54-63.	4.3	42
121	In situ inflammatory-regulated drug-loaded hydrogels for promoting pelvic floor repair. Journal of Controlled Release, 2020, 322, 375-389.	9.9	42
122	Bacteria-specific phototoxic reactions triggered by blue light and phytochemical carvacrol. Science Translational Medicine, 2021, 13, .	12.4	42
123	Programmable immune activating electrospun fibers for skin regeneration. Bioactive Materials, 2021, 6, 3218-3230.	15.6	42
124	Electrospun Poly(L-Lactide) Fiber with Ginsenoside Rg3 for Inhibiting Scar Hyperplasia of Skin. PLoS ONE, 2013, 8, e68771.	2.5	41
125	Metabolism Balance Regulation via Antagonistâ€Functionalized Injectable Microsphere for Nucleus Pulposus Regeneration. Advanced Functional Materials, 2020, 30, 2006333.	14.9	40
126	Flexible Osteogenic Glue as an Allâ€Inâ€One Solution to Assist Fracture Fixation and Healing. Advanced Functional Materials, 2021, 31, 2102465.	14.9	40

#	Article	IF	Citations
127	Electrospun nanofibrous scaffolds of poly (l-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration. Materials Science and Engineering C, 2014, 35, 426-433.	7.3	39
128	Gene Silencing via PDA/ERK2â€siRNAâ€Mediated Electrospun Fibers for Peritendinous Antiadhesion. Advanced Science, 2019, 6, 1801217.	11.2	39
129	Host Defense Peptide Mimicking Peptide Polymer Exerting Fast, Broad Spectrum, and Potent Activities toward Clinically Isolated Multidrug-Resistant Bacteria. ACS Infectious Diseases, 2020, 6, 479-488.	3.8	39
130	Inhaled ACE2-engineered microfluidic microsphere for intratracheal neutralization of COVID-19 and calming of the cytokine storm. Matter, 2022, 5, 336-362.	10.0	39
131	Microfluidic Encapsulation of Prickly Zincâ€Doped Copper Oxide Nanoparticles with VD1142 Modified Spermine Acetalated Dextran for Efficient Cancer Therapy. Advanced Healthcare Materials, 2017, 6, 1601406.	7.6	38
132	Mussel-Inspired Peptide Coatings on Titanium Implant to Improve Osseointegration in Osteoporotic Condition. ACS Biomaterials Science and Engineering, 2018, 4, 2505-2515.	5.2	38
133	Endovascular Metal Devices for the Treatment of Cerebrovascular Diseases. Advanced Materials, 2019, 31, e1805452.	21.0	38
134	Peritumoral Microgel Reservoir for Longâ€Term Lightâ€Controlled Tripleâ€Synergistic Treatment of Osteosarcoma with Single Ultraâ€Low Dose. Small, 2021, 17, e2100479.	10.0	38
135	ECM Decorated Electrospun Nanofiber for Improving Bone Tissue Regeneration. Polymers, 2018, 10, 272.	4.5	37
136	Local release of gemcitabine via <i>in situ</i> VV-crosslinked lipid-strengthened hydrogel for inhibiting osteosarcoma. Drug Delivery, 2018, 25, 1642-1651.	5.7	37
137	Adhesive nanoparticles with inflammation regulation for promoting skin flap regeneration. Journal of Controlled Release, 2019, 297, 91-101.	9.9	37
138	Healing improvement after rotator cuff repair using gelatin-grafted poly(L-lactide) electrospun fibrous membranes. Journal of Surgical Research, 2015, 193, 33-42.	1.6	36
139	Capturing dynamic biological signals via bio-mimicking hydrogel for precise remodeling of soft tissue. Bioactive Materials, 2021, 6, 4506-4516.	15.6	36
140	Localized Controlled Delivery of Gemcitabine via Microsol Electrospun Fibers to Prevent Pancreatic Cancer Recurrence. Advanced Healthcare Materials, 2018, 7, e1800593.	7.6	35
141	Advanced microfluidic devices for fabricating multiâ€structural hydrogel microsphere. Exploration, 2021, 1, .	11.0	35
142	In vivo inhibition of hypertrophic scars by implantable ginsenoside-Rg3-loaded electrospun fibrous membranes. Acta Biomaterialia, 2013, 9, 9461-9473.	8.3	34
143	Extracellular matrix modulates the biological effects of melatonin in mesenchymal stem cells. Journal of Endocrinology, 2014, 223, 167-180.	2.6	34
144	Full-course inhibition of biodegradation-induced inflammation inÂfibrous scaffold by loading enzyme-sensitive prodrug. Biomaterials, 2015, 53, 202-210.	11.4	34

#	Article	IF	Citations
145	Responsive drug-delivery microcarriers based on the silk fibroin inverse opal scaffolds for controllable drug release. Applied Materials Today, 2020, 19, 100540.	4.3	34
146	Silver Nanoparticles/Ibuprofen-Loaded Poly(I-lactide) Fibrous Membrane: Anti-Infection and Anti-Adhesion Effects. International Journal of Molecular Sciences, 2014, 15, 14014-14025.	4.1	33
147	Nanoparticleâ€Embedded Electrospun Fiber–Covered Stent to Assist Intraluminal Photodynamic Treatment of Oesophageal Cancer. Small, 2019, 15, e1904979.	10.0	33
148	Regulation of the inflammatory cycle by a controllable release hydrogel for eliminating postoperative inflammation after discectomy. Bioactive Materials, 2021, 6, 146-157.	15.6	33
149	Macrophage infiltration of electrospun polyester fibers. Biomaterials Science, 2017, 5, 1579-1587.	5.4	32
150	Electrospun Ginsenoside Rg3/poly(lactic-co-glycolic acid) fibers coated with hyaluronic acid for repairing and inhibiting hypertrophic scars. Journal of Materials Chemistry B, 2013, 1, 4428.	5.8	31
151	An immunological electrospun scaffold for tumor cell killing and healthy tissue regeneration. Materials Horizons, 2018, 5, 1082-1091.	12.2	31
152	Biodegradable dual-crosslinked adhesive glue for fixation and promotion of osteogenesis. Chemical Engineering Journal, 2022, 427, 132000.	12.7	31
153	Transcriptome Analysis Revealed the Symbiosis Niche of 3D Scaffolds to Accelerate Bone Defect Healing. Advanced Science, 2022, 9, e2105194.	11.2	31
154	Shear-responsive boundary-lubricated hydrogels attenuate osteoarthritis. Bioactive Materials, 2022, 16, 472-484.	15.6	31
155	Evaluation of oriented electrospun fibers for periosteal flap regeneration in biomimetic triphasic osteochondral implant. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1407-1414.	3.4	30
156	A hierarchical, stretchable and stiff fibrous biotemplate engineered using stagger-electrospinning for augmentation of rotator cuff tendon-healing. Journal of Materials Chemistry B, 2015, 3, 990-1000.	5.8	30
157	Synergistic mediation of tumor signaling pathways in hepatocellular carcinoma therapy via dual-drug-loaded pH-responsive electrospun fibrous scaffolds. Journal of Materials Chemistry B, 2015, 3, 3436-3446.	5.8	30
158	Cell Therapeutic Strategies for Spinal Cord Injury. Advances in Wound Care, 2019, 8, 585-605.	5.1	30
159	Biomimicry, biomineralization, and bioregeneration of bone using advanced three-dimensional fibrous hydroxyapatite scaffold. Materials Today Advances, 2019, 3, 100014.	5.2	30
160	MMPâ€2 Responsive Unidirectional Hydrogelâ€Electrospun Patch Loading TGFâ€Î²1 siRNA Polyplexes for Peritendinous Antiâ€Adhesion. Advanced Functional Materials, 2021, 31, 2008364.	14.9	30
161	Spatioâ€Design of Multidimensional Prickly Znâ€Doped CuO Nanoparticle for Efficient Bacterial Killing. Advanced Materials Interfaces, 2016, 3, 1600472.	3.7	29
162	Immunomodulated electrospun fibrous scaffolds via bFGF camouflage for pelvic regeneration. Applied Materials Today, 2019, 15, 570-581.	4.3	29

#	Article	IF	Citations
163	Ice-Inspired Superlubricated Electrospun Nanofibrous Membrane for Preventing Tissue Adhesion. Nano Letters, 2020, 20, 6420-6428.	9.1	29
164	Thermoâ€Sensitive Dualâ€Functional Nanospheres with Enhanced Lubrication and Drug Delivery for the Treatment of Osteoarthritis. Chemistry - A European Journal, 2020, 26, 10564-10574.	3.3	29
165	Regulating Macrophage Polarization in High Glucose Microenvironment Using Lithiumâ€Modified Bioglassâ€Hydrogel for Diabetic Bone Regeneration. Advanced Healthcare Materials, 2022, 11, e2200298.	7.6	29
166	Fabrication of patterned PDLLA/PCL composite scaffold by electrospinning. Journal of Applied Polymer Science, 2013, 127, 1550-1554.	2.6	28
167	Development of a visible light, cross-linked GelMA hydrogel containing decellularized human amniotic particles as a soft tissue replacement for oral mucosa repair. RSC Advances, 2019, 9, 18344-18352.	3.6	28
168	DNAâ€Grafted Hyaluronic Acid System with Enhanced Injectability and Biostability for Photoâ€Controlled Osteoarthritis Gene Therapy. Advanced Science, 2021, 8, 2004793.	11.2	28
169	Construction of Dual-Biofunctionalized Chitosan/Collagen Scaffolds for Simultaneous Neovascularization and Nerve Regeneration. Research, 2020, 2020, 2603048.	5 . 7	28
170	Fabrication of a Delaying Biodegradable Magnesium Alloy-Based Esophageal Stent via Coating Elastic Polymer. Materials, 2016, 9, 384.	2.9	27
171	Multifunctional integrally-medicalized hydrogel system with internal synergy for efficient tissue regeneration. Chemical Engineering Journal, 2021, 406, 126839.	12.7	27
172	Targeted micelles with chemotherapeutics and gene drugs to inhibit the G1/S and G2/M mitotic cycle of prostate cancer. Journal of Nanobiotechnology, 2021, 19, 17.	9.1	26
173	Metformin-hydrogel with glucose responsiveness for chronic inflammatory suppression. Chemical Engineering Journal, 2022, 428, 131064.	12.7	26
174	Balancing Microthrombosis and Inflammation via Injectable Protein Hydrogel for Inflammatory Bowel Disease. Advanced Science, 2022, 9, e2200281.	11.2	26
175	Regulating Inflammation Using Acid-Responsive Electrospun Fibrous Scaffolds for Skin Scarless Healing. Mediators of Inflammation, 2014, 2014, 1-11.	3.0	25
176	Rapid Extracellular Matrix Remodeling via Geneâ€Electrospun Fibers as a "Patch―for Tissue Regeneration. Advanced Functional Materials, 2021, 31, 2009879.	14.9	25
177	Microfluidic Hydrogel Microspheres: Injectable Microfluidic Hydrogel Microspheres for Cell and Drug Delivery (Adv. Funct. Mater. 31/2021). Advanced Functional Materials, 2021, 31, 2170227.	14.9	25
178	Electrospun Fibers Improving Cellular Respiration via Mitochondrial Protection. Small, 2021, 17, e2104012.	10.0	25
179	Fabrication of Gelatin-Based Electrospun Composite Fibers for Anti-Bacterial Properties and Protein Adsorption. Marine Drugs, 2016, 14, 192.	4.6	24
180	Beeswax-inspired superhydrophobic electrospun membranes for peritendinous anti-adhesion. Materials Science and Engineering C, 2020, 116, 111166.	7.3	24

#	Article	IF	Citations
181	Metal-organic framework (MOF)-based biomaterials in bone tissue engineering. Engineered Regeneration, 2021, 2, 105-108.	6.0	24
182	Silencing Geneâ€Engineered Injectable Hydrogel Microsphere for Regulation of Extracellular Matrix Metabolism Balance. Small Methods, 2022, 6, e2101201.	8.6	24
183	Adhesive and Injectable Hydrogel Microspheres for Inner Ear Treatment. Small, 2022, 18, e2106591.	10.0	24
184	Differential Tumor Necrosis Factor Alpha Expression and Release from Peritoneal Mouse Macrophages In Vitro in Response to Proliferating Gram-Positive versus Gram-Negative Bacteria. Infection and Immunity, 2000, 68, 4422-4429.	2.2	23
185	Gelatin-based composite hydrogels with biomimetic lubrication and sustained drug release. Friction, 2022, 10, 232-246.	6.4	23
186	Antibacterial antiadhesion membranes from silverâ€nanoparticleâ€doped electrospun poly(<scp>L</scp> â€lactide) nanofibers. Journal of Applied Polymer Science, 2013, 129, 3459-3465.	2.6	22
187	Highly flexible and rapidly degradable papaverine-loaded electrospun fibrous membranes for preventing vasospasm and repairing vascular tissue. Acta Biomaterialia, 2014, 10, 3018-3028.	8.3	22
188	Recent advance of erythrocyte-mimicking nanovehicles: From bench to bedside. Journal of Controlled Release, 2019, 314, 81-91.	9.9	22
189	Osteogenic and antiseptic nanocoating by in situ chitosan regulated electrochemical deposition for promoting osseointegration. Materials Science and Engineering C, 2019, 102, 415-426.	7.3	22
190	Pomegranateâ€Structured Electrosprayed Microspheres for Longâ€Term Controlled Drug Release. Particle and Particle Systems Characterization, 2015, 32, 529-535.	2.3	21
191	Two-dimensional electrospun nanofibrous membranes for promoting random skin flap survival. RSC Advances, 2016, 6, 9360-9369.	3.6	21
192	Multifunctional HA/Cu nano-coatings on titanium using PPy coordination and doping <i>via</i> pulse electrochemical polymerization. Biomaterials Science, 2018, 6, 575-585.	5.4	21
193	Self-Nanoemulsifying Electrospun Fiber Enhancing Drug Permeation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 7836-7849.	8.0	21
194	Lightâ€Controlled Nanosystem with Sizeâ€Flexibility Improves Targeted Retention for Tumor Suppression. Advanced Functional Materials, 2021, 31, 2101262.	14.9	21
195	NSC-derived extracellular matrix-modified GelMA hydrogel fibrous scaffolds for spinal cord injury repair. NPG Asia Materials, 2022, 14, .	7.9	21
196	CRISPR as system for biomedical diagnostic platforms. View, 2020, 1, 20200008.	5.3	20
197	Biological signal integrated microfluidic hydrogel microspheres for promoting bone regeneration. Chemical Engineering Journal, 2022, 436, 135176.	12.7	20
198	Biodegradable rapamycin-eluting nano-fiber membrane-covered metal stent placement to reduce fibroblast proliferation in experimental stricture in a canine model. Endoscopy, 2013, 45, 458-468.	1.8	19

#	Article	IF	CITATIONS
199	Anisotropic ridge/groove microstructure for regulating morphology and biological function of Schwann cells. Applied Materials Today, 2020, 18, 100468.	4.3	19
200	Electrospun fibers: an innovative delivery method for the treatment of bone diseases. Expert Opinion on Drug Delivery, 2020, 17, 993-1005.	5.0	18
201	Effect of kartogenin-loaded gelatin methacryloyl hydrogel scaffold with bone marrow stimulation for enthesis healing in rotator cuff repair. Journal of Shoulder and Elbow Surgery, 2021, 30, 544-553.	2.6	18
202	Bacteria-engineered porous sponge for hemostasis and vascularization. Journal of Nanobiotechnology, 2022, 20, 47.	9.1	18
203	In Vivo Early Intervention and the Therapeutic Effects of 20(S)-Ginsenoside Rg3 on Hypertrophic Scar Formation. PLoS ONE, 2014, 9, e113640.	2.5	17
204	Microfluidicsâ€Assisted Osteogenesis: Injectable Stem Cellâ€Laden Photocrosslinkable Microspheres Fabricated Using Microfluidics for Rapid Generation of Osteogenic Tissue Constructs (Adv. Funct.) Tj ETQq0 0 0	rg B∓. Øve	rlo ck 10 Tf 50
205	Accelerated fabrication of antibacterial and osteoinductive electrospun fibrous scaffolds <i>via</i> electrochemical deposition. RSC Advances, 2018, 8, 9546-9554.	3.6	17
206	Recombination Monophosphoryl Lipid A-Derived Vacosome for the Development of Preventive Cancer Vaccines. ACS Applied Materials & Samp; Interfaces, 2020, 12, 44554-44562.	8.0	17
207	Injectable and Selfâ€Healing Hydrogel with Antiâ€Bacterial and Antiâ€Inflammatory Properties for Acute Bacterial Rhinosinusitis with Micro Invasive Treatment. Advanced Healthcare Materials, 2020, 9, e2001032.	7.6	17
208	Vascularized silk electrospun fiber for promoting oral mucosa regeneration. NPG Asia Materials, 2020, 12, .	7.9	17
209	Heatâ€Shrinkable Electrospun Fibrous Tape for Restoring Structure and Function of Loose Soft Tissue. Advanced Functional Materials, 2021, 31, 2007440.	14.9	17
210	Click chemistry extracellular vesicle/peptide/chemokine nanocarriers for treating central nervous system injuries. Acta Pharmaceutica Sinica B, 2023, 13, 2202-2218.	12.0	17
211	Microsol-electrospinning for controlled loading and release of water-soluble drugs in microfibrous membranes. RSC Advances, 2014, 4, 43220-43226.	3.6	16
212	Fabrication of a photo-crosslinked gelatin hydrogel for preventing abdominal adhesion. RSC Advances, 2016, 6, 92449-92453.	3.6	16
213	Reinforcement of transvaginal repair using polypropylene mesh functionalized with basic fibroblast growth factor. Colloids and Surfaces B: Biointerfaces, 2016, 142, 10-19.	5.0	16
214	In vitro and in vivo combined antibacterial effect of levofloxacin/silver co-loaded electrospun fibrous membranes. Journal of Materials Chemistry B, 2017, 5, 7632-7643.	5.8	16
215	Dual Biosignalâ€Functional Injectable Microspheres for Remodeling Osteogenic Microenvironment. Small, 2022, 18, e2201656.	10.0	16
216	Transporting Hydrogel via Chinese Acupuncture Needles for Lesion Positioning Therapy. Advanced Science, 2022, 9, e2200079.	11.2	15

#	Article	IF	CITATIONS
217	Two Sides of Electrospun Fiber in Promoting and Inhibiting Biomedical Processes. Advanced Therapeutics, 2021, 4, .	3.2	14
218	Acoustic transmitted electrospun fibrous membranes for tympanic membrane regeneration. Chemical Engineering Journal, 2021, 419, 129536.	12.7	14
219	Bipolar Metal Flexible Electrospun Fibrous Membrane Based on Metal–Organic Framework for Gradient Healing of Tendonâ€ŧoâ€Bone Interface Regeneration. Advanced Healthcare Materials, 2022, 11, e2200072.	7.6	14
220	A Biomaterialâ€Based Hedging Immune Strategy for Scarless Tendon Healing. Advanced Materials, 2022, 34, e2200789.	21.0	14
221	Progress of delivery methods for CRISPR-Cas9. Expert Opinion on Drug Delivery, 2022, 19, 913-926.	5.0	14
222	Immunology and bioinformatics analysis of injectable organic/inorganic microfluidic microspheres for promoting bone repair. Biomaterials, 2022, 288, 121685.	11.4	14
223	Fibrous Composites With Anisotropic Distribution of Mechanical Properties After Layerâ€byâ€Layer Deposition of Aligned Electrospun Fibers. Advanced Engineering Materials, 2010, 12, B529.	3.5	13
224	In situ adjuvant therapy using a responsive doxorubicin-loaded fibrous scaffold after tumor resection. Colloids and Surfaces B: Biointerfaces, 2017, 158, 363-369.	5.0	13
225	A "three-in-one―injectable hydrogel platform with osteogenesis, angiogenesis and antibacterial for guiding bone regeneration. Applied Materials Today, 2020, 20, 100763.	4.3	13
226	Improving drug utilization platform with injectable mucoadhesive hydrogel for treating ulcerative colitis. Chemical Engineering Journal, 2021, 424, 130464.	12.7	13
227	Regulated Exogenous/Endogenous Inflammation via "Innerâ€Outer―Medicated Electrospun Fibers for Promoting Tissue Reconstruction. Advanced Healthcare Materials, 2022, 11, e2102534.	7.6	13
228	Modulated integrin signaling receptors of stem cells via ultra-soft hydrogel for promoting angiogenesis. Composites Part B: Engineering, 2022, 234, 109747.	12.0	12
229	Nanofat functionalized injectable super-lubricating microfluidic microspheres for treatment of osteoarthritis. Biomaterials, 2022, 285, 121545.	11.4	12
230	Self-assembly of DNA nanogels with endogenous microRNA toehold self-regulating switches for targeted gene regulation therapy. Biomaterials Science, 2022, 10, 4119-4125.	5.4	12
231	Disease-triggered hydrogel therapy. Materials Today, 2015, 18, 56-57.	14.2	11
232	Nano-in-micro electronspun membrane: merging nanocarriers and microfibrous scaffold for long-term scar inhibition. Chemical Engineering Journal, 2020, 397, 125405.	12.7	11
233	Promoting coagulation and activating SMAD3 phosphorylation in wound healing via a dual-release thrombin-hydrogel. Chemical Engineering Journal, 2020, 397, 125414.	12.7	11
234	Biomaterials for microfluidic technology. Materials Futures, 2022, 1, 012401.	8.4	11

#	Article	IF	CITATIONS
235	Honeycomb-Like Hydrogel Microspheres for 3D Bulk Construction of Tumor Models. Research, 2022, 2022, 9809763.	5 . 7	11
236	Regulation of macrophage subtype via injectable micro/nano-structured porous microsphere for reprogramming osteoimmune microenvironment. Chemical Engineering Journal, 2022, 439, 135692.	12.7	11
237	Regulated macrophage immune microenvironment in 3D printed scaffolds for bone tumor postoperative treatment. Bioactive Materials, 2023, 19, 474-485.	15.6	11
238	In vitro and in vivo evaluation of Rapamycin-eluting nanofibers coated on cardia stents. RSC Advances, 2014, 4, 34405-34411.	3.6	10
239	Polymeric Biodegradable Stent Insertion in the Esophagus. Polymers, 2016, 8, 158.	4. 5	10
240	Electrospun Nanofibers for Cancer Therapy. Advances in Experimental Medicine and Biology, 2021, 1295, 163-190.	1.6	10
241	Biological homeostasis-inspired light-excited multistage nanocarriers induce dual apoptosis in tumors. Biomaterials, 2021, 279, 121194.	11.4	10
242	Fabrication and surface characterization of electrosprayed poly(<scp>L</scp> â€lactide) microspheres. Journal of Applied Polymer Science, 2013, 128, 3177-3183.	2.6	9
243	Smart electrospun fibrous scaffolds inhibit tumor cells and promote normal cell proliferation. RSC Advances, 2014, 4, 51696-51702.	3.6	9
244	Efficacy and safety evaluation of paclitaxel-loaded metal stents in patients with malignant biliary obstructions. European Journal of Surgical Oncology, 2019, 45, 816-819.	1.0	9
245	Mechanism of zirconia microgroove surface structure for osseointegration. Materials Today Advances, 2021, 12, 100159.	5. 2	9
246	Functional nanoparticles in electrospun fibers for biomedical applications. Nano Select, 2022, 3, 999-1011.	3.7	9
247	Charge and receptor functional injectable hydrogels as cytokine-releasing reservoirs for wound healing. Chemical Engineering Journal, 2022, 450, 137880.	12.7	9
248	Local bone metabolism balance regulation via double-adhesive hydrogel for fixing orthopedic implants. Bioactive Materials, 2022, 12, 169-184.	15.6	8
249	Stem Cellâ€Recruiting Injectable Microgels for Repairing Osteoarthritis (Adv. Funct. Mater. 48/2021). Advanced Functional Materials, 2021, 31, 2170357.	14.9	8
250	Myocardial fibrosis reversion via rhACE2-electrospun fibrous patch for ventricular remodeling prevention. Npj Regenerative Medicine, 2021, 6, 44.	5.2	7
251	Fabrication and evaluation of polymer-based esophageal stents for benign esophagus stricture insertion. RSC Advances, 2016, 6, 16891-16898.	3.6	6
252	Nanogel-electrospinning for controlling the release of water-soluble drugs. Journal of Materials Chemistry B, 2016, 4, 2171-2178.	5.8	6

#	Article	IF	CITATIONS
253	Tissue Regeneration: Bioinspired Hydrogel Electrospun Fibers for Spinal Cord Regeneration (Adv.) Tj ETQq1 1 0.78	34314 rgBT 14.9	{Overlock
254	Direct investigation of current transport in cells by conductive atomic force microscopy. Journal of Microscopy, 2020, 277, 49-57.	1.8	6
255	Multistage signal-interactive nanoparticles improve tumor targeting through efficient nanoparticle-cell communications. Cell Reports, 2021, 35, 109131.	6.4	6
256	Engineered Customizable Microvessels for Progressive Vascularization in Large Regenerative Implants. Advanced Healthcare Materials, 2021, , 2101836.	7.6	6
257	Fabrication of Acid-Responsive Electrospun Fibers via Doping Sodium Bicarbonate for Quick Releasing Drug. Nanoscience and Nanotechnology Letters, 2014, 6, 339-345.	0.4	5
258	Outer–inner dual reinforced micro/nano hierarchical scaffolds for promoting osteogenesis. Nanoscale, 2019, 11, 15794-15803.	5.6	5
259	Editorial: Nanotechnology in Cardiovascular Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2020, 8, 608844.	4.1	5
260	Biomaterial Scaffolds for Improving Vascularization During Skin Flap Regeneration. Chinese Journal of Plastic and Reconstructive Surgery, 2020, 2, 109-119.	0.3	5
261	Nanoantidote for repression of acidosis pH promoting COVIDâ€19 infection. View, 2022, 3, .	5.3	5
262	Porous scaffolds with enzyme-responsive Kartogenin release for recruiting stem cells and promoting cartilage regeneration. Chemical Engineering Journal, 2022, 447, 137454.	12.7	5
263	Correction: A hierarchical, stretchable and stiff fibrous biotemplate engineered using stagger-electrospinning for augmentation of rotator cuff tendon-healing. Journal of Materials Chemistry B, 2015, 3, 2012-2012.	5.8	4
264	Examination of Alzheimer's disease by a combination of electrostatic force and mechanical measurement. Journal of Microscopy, 2019, 275, 66-72.	1.8	4
265	Highly active biological dermal acellular tissue scaffold composite with human bone powder for bone regeneration. Materials and Design, 2021, 209, 109963.	7.0	4
266	Functional biomaterials. APL Bioengineering, 2022, 6, 010401.	6.2	4
267	Integrated therapy on residual tumor after palliative operation using dual-phase drug releasing electrospun fibrous scaffolds. Journal of Controlled Release, 2015, 213, e151-e152.	9.9	3
268	Mechanical on-off gates for regulation of drug release in cutaneous or musculoskeletal tissue repairs. Materials Science and Engineering C, 2020, 115, 111048.	7.3	3
269	NIR-responsible and optically monitored nanoparticles release from electrospinning fibrous matrices. Materials Today Advances, 2020, 6, 100044.	5.2	3
270	Nutrient capsules maintain tear film homeostasis for human corneal lenticule transplantation. Chemical Engineering Journal, 2022, 450, 138078.	12.7	3

#	Article	IF	CITATIONS
271	Long-term release of water-soluble drugs using microsol-electrospun nanofiber sheets. Journal of Controlled Release, 2015, 213, e10.	9.9	2
272	Metalâ€Based Stents: Endovascular Metal Devices for the Treatment of Cerebrovascular Diseases (Adv.) Tj ETQq(0.0 rgBT 21.09	/Qverlock 10
273	Injectable Porous Microspheres: Metabolism Balance Regulation via Antagonistâ€Functionalized Injectable Microsphere for Nucleus Pulposus Regeneration (Adv. Funct. Mater. 52/2020). Advanced Functional Materials, 2020, 30, 2070348.	14.9	2
274	Mineralized manganese dioxide channel as the stent coating for in situ precise tumor navigation. Nano Research, 2021, 14, 2145.	10.4	2
275	Fertility Restoration: Microenvironmentâ€Protected Exosomeâ€Hydrogel for Facilitating Endometrial Regeneration, Fertility Restoration, and Live Birth of Offspring (Small 11/2021). Small, 2021, 17, 2170049.	10.0	2
276	A removable bio-orthogonal catalytic patch: A local "landmine― Matter, 2021, 4, 2601-2602.	10.0	2
277	Promotion of initial anti-tumor effect via polydopamine modified doxorubicin-loaded electrospun fibrous membranes. International Journal of Clinical and Experimental Pathology, 2014, 7, 5436-49.	0.5	2
278	Endogenous Electricâ€Fieldâ€Coupled Electrospun Short Fiber via Collecting Wound Exudation (Adv.) Tj ETQq0 (0 0 rgBT /C	Overlock 10 Tr
279	Rg3-loaded biodegradable composite electrospun fibers for long-term inhibition of hypertrophic scarring. Journal of Controlled Release, 2015, 213, e118.	9.9	1
280	Bionanofibers in drug delivery * *Xin Zhao and Lara Yildirimer contributed equally , 2016, , 403-445.		1
281	Hydrogel fibrous scaffolds for accelerated wound healing. , 2018, , 251-274.		1
282	Postoperative placement of an antiâ€fibrotic poly Lâ€lactide electrospun fibrous membrane after sinus surgery. International Forum of Allergy and Rhinology, 2020, 10, 1285-1294.	2.8	1
283	Efficient integration and fast excretion of drug carrier: The trojan horse for cancer therapy. Smart Materials in Medicine, 2020, 1, 148-149.	6.7	1
284	Microvascular Scaffolds: A Biomimetic 3Dâ€Selfâ€Forming Approach for Microvascular Scaffolds (Adv.) Tj ETQq0	0 0 rgBT /	Oyerlock 10
285	Electrospun Fibrous Tapes: Heatâ€Shrinkable Electrospun Fibrous Tape for Restoring Structure and Function of Loose Soft Tissue (Adv. Funct. Mater. 8/2021). Advanced Functional Materials, 2021, 31, 2170054.	14.9	1
286	Programmable multicellular and spatially patterned organoids: A one-pot strategy. Matter, 2022, 5, 1633-1635.	10.0	1
287	Clinical Translation of Nanomaterials. , 2019, , 75-111.		0
288	Selfâ∈Healing: Selfâ∈Healing and Injectable Hydrogel for Matching Skin Flap Regeneration (Adv. Sci. 3/2019). Advanced Science, 2019, 6, 1970019.	11.2	O

ARTICLE IF CITATIONS

289 Electrospun Biodegradable Polyester Micro-/Nanofibers for Drug Delivery and Their Clinical Applications., 2016,, 125-158.