Yunhui Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/571610/publications.pdf

Version: 2024-02-01

75

all docs

74 2,305 27
papers citations h-index

75

docs citations

h-index g-index

75 3060
times ranked citing authors

46

#	Article	IF	CITATIONS
1	Dual-delivery of VEGF and PDGF by double-layered electrospun membranes for blood vessel regeneration. Biomaterials, 2013, 34, 2202-2212.	11.4	242
2	Preparation and antibacterial activity of electrospun chitosan/poly(ethylene oxide) membranes containing silver nanoparticles. Colloid and Polymer Science, 2009, 287, 1425-1434.	2.1	153
3	Strategies for anti-icing: low surface energy or liquid-infused?. RSC Advances, 2016, 6, 70251-70260.	3.6	118
4	Amphiphilic Antifogging/Anti-Icing Coatings Containing POSS-PDMAEMA- <i>b</i> -PSBMA. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22959-22969.	8.0	113
5	Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration. Acta Biomaterialia, 2016, 43, 303-313.	8.3	91
6	A pilot study of conically graded chitosan–gelatin hydrogel/PLGA scaffold with dualâ€delivery of TGFâ€Î²1 and BMPâ€2 for regeneration of cartilage–bone interface. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1344-1353.	3.4	70
7	Formation of porous PLGA scaffolds by a combining method of thermally induced phase separation and porogen leaching. Journal of Applied Polymer Science, 2008, 109, 1232-1241.	2.6	69
8	Facile preparation of superhydrophobic coating by spraying a fluorinated acrylic random copolymer micelle solution. Soft Matter, 2013, 9, 1005-1009.	2.7	64
9	Formation of zwitterionic coatings with an aqueous lubricating layer for antifogging/anti-icing applications. Progress in Organic Coatings, 2018, 115, 56-64.	3.9	62
10	Antifogging/Antibacterial Coatings Constructed by <i>N</i> -Hydroxyethylacrylamide and Quaternary Ammonium-Containing Copolymers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12305-12316.	8.0	62
11	Local Delivery of Dual MicroRNAs in Trilayered Electrospun Grafts for Vascular Regeneration. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6863-6875.	8.0	61
12	Electrospinning of ultrafine core/shell fibers for biomedical applications. Science China Chemistry, 2010, 53, 1246-1254.	8.2	60
13	Icephobic Durability of Branched PDMS Slippage Coatings Co-Cross-Linked by Functionalized POSS. ACS Applied Materials & Samp; Interfaces, 2019, 11, 4654-4666.	8.0	58
14	Antimicrobial eugenol-loaded electrospun membranes of poly(Îμ-caprolactone)/gelatin incorporated with REDV for vascular graft applications. Colloids and Surfaces B: Biointerfaces, 2018, 162, 335-344.	5.0	52
15	UV-curable POSS-fluorinated methacrylate diblock copolymers for icephobic coatings. Progress in Organic Coatings, 2016, 93, 87-96.	3.9	46
16	Electrospun membranes of PELCL/PCL-REDV loading with miRNA-126 for enhancement of vascular endothelial cell adhesion and proliferation. Materials Science and Engineering C, 2018, 85, 37-46.	7.3	45
17	Highly icephobic properties on slippery surfaces formed from polysiloxane and fluorinated POSS. Progress in Organic Coatings, 2017, 103, 48-59.	3.9	44
18	Improvement of antiâ€icing properties of low surface energy coatings by introducing phaseâ€change microcapsules. Polymer Engineering and Science, 2018, 58, 973-979.	3.1	43

#	Article	IF	Citations
19	Integrated antibacterial and antifouling surfaces via cross-linking chitosan- g -eugenol/zwitterionic copolymer on electrospun membranes. Colloids and Surfaces B: Biointerfaces, 2018, 169, 151-159.	5.0	39
20	Antibacterial PCL electrospun membranes containing synthetic polypeptides for biomedical purposes. Colloids and Surfaces B: Biointerfaces, 2018, 172, 330-337.	5.0	36
21	Preparation and Characterization of Melamine-Formaldehyde Resin Micro- and Nanocapsules Filled with <i>n</i> -Dodecane. Journal of Macromolecular Science - Physics, 2012, 51, 1976-1990.	1.0	35
22	Polydimethylsiloxane-polymethacrylate block copolymers tethering quaternary ammonium salt groups for antimicrobial coating. Applied Surface Science, 2015, 328, 183-192.	6.1	35
23	Synthesis of POSS-containing fluorosilicone block copolymers via RAFT polymerization for application as non-wetting coating materials. Progress in Organic Coatings, 2015, 78, 188-199.	3.9	34
24	Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells. Materials Science and Engineering C, 2016, 68, 623-631.	7.3	33
25	Submicron/nano-structured icephobic surfaces made from fluorinated polymethylsiloxane and octavinyl-POSS. Applied Surface Science, 2016, 360, 113-120.	6.1	33
26	Structure Memory Photonic Crystals Prepared by Hierarchical Self-Assembly of Semicrystalline Bottlebrush Block Copolymers. Macromolecules, 2020, 53, 3602-3610.	4.8	33
27	Formation of icephobic film from POSS-containing fluorosilicone multi-block methacrylate copolymers. Progress in Organic Coatings, 2015, 89, 150-159.	3.9	28
28	Trehalose-functional glycopeptide enhances glycerol-free cryopreservation of red blood cells. Journal of Materials Chemistry B, 2019, 7, 5695-5703.	5.8	25
29	Handwritable one-dimensional photonic crystals prepared from dendronized brush block copolymers. Polymer Chemistry, 2019, 10, 1519-1525.	3.9	25
30	One-dimensional photonic crystals prepared by self-assembly of brush block copolymers with broad PDI. Journal of Materials Science, 2018, 53, 16160-16168.	3.7	24
31	Target regulation of both VECs and VSMCs by dualâ€loading miRNAâ€126 and miRNAâ€145 in the bilayered electrospun membrane for smallâ€diameter vascular regeneration. Journal of Biomedical Materials Research - Part A, 2019, 107, 371-382.	4.0	24
32	Preparation of C/Ni–NiO composite nanofibers for anode materials in lithium-ion batteries. Applied Physics A: Materials Science and Processing, 2013, 113, 683-692.	2.3	22
33	Electrospun PELCL membranes loaded with QK peptide for enhancement of vascular endothelial cell growth. Journal of Materials Science: Materials in Medicine, 2016, 27, 106.	3.6	22
34	Performance of TMC-g-PEG-VAPG/miRNA-145 complexes in electrospun membranes for target-regulating vascular SMCs. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110369.	5.0	22
35	Structure and properties of electrospun poly(vinylidene fluoride)/polycarbonate membranes after hotâ€press. Journal of Applied Polymer Science, 2011, 122, 774-781.	2.6	21
36	Temperature and pH Dual-Responsive Supramolecular Polymer Hydrogels Hybridized with Functional Inorganic Nanoparticles. Macromolecular Chemistry and Physics, 2017, 218, 1600540.	2.2	21

#	Article	IF	CITATIONS
37	Synthesis and characterization of core–shell polyacrylate latex containing fluorine/silicone in the shell and the self-stratification film. Colloid and Polymer Science, 2012, 290, 203-211.	2.1	20
38	Enhancement of icephobic properties based on UV-curable fluorosilicone copolymer films. RSC Advances, 2015, 5, 90578-90587.	3.6	20
39	From Paramagnetic to Superparamagnetic Ionic Liquid/Poly(ionic liquid): The Effect of π–π Stacking Interaction. ACS Macro Letters, 2019, 8, 1504-1510.	4.8	19
40	Mechanical properties of polypropylene by diversely compatibilizing with titanate whiskers in composites. Composites Science and Technology, 2018, 164, 103-109.	7.8	16
41	Membrane Stabilization of Poly(ethylene glycol)- <i>b</i> -ci>b-polypeptide- <i>g</i> -trehalose Assists Cryopreservation of Red Blood Cells. ACS Applied Bio Materials, 2020, 3, 3294-3303.	4.6	16
42	Fluorosilicone multi-block copolymers tethering quaternary ammonium salt groups for antimicrobial purpose. Applied Surface Science, 2015, 347, 231-241.	6.1	15
43	Enhancing Membrane-Disruptive Activity via Hydrophobic Phenylalanine and Lysine Tethered to Poly(aspartic acid). ACS Applied Materials & Samp; Interfaces, 2019, 11, 14538-14547.	8.0	15
44	Electrospinning of ultrafine PVDF/PC fibers from their dispersed solutions. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 372-380.	2.1	14
45	Combination of hydrophobically modified \hat{l}^3 -poly(glutamic acid) and trehalose achieving high cryosurvival of RBCs. Science China Technological Sciences, 2021, 64, 806-816.	4.0	14
46	Synthesis of paramagnetic polymers based on polyethyleneimine (PEI). RSC Advances, 2015, 5, 92207-92211.	3.6	12
47	Amphiphilic Copolymers Containing POSS and SBMA with <i>N</i> -Vinylcaprolactam and <i>N</i> -Vinylpyrrolidone for THF Hydrate Inhibition. ACS Omega, 2018, 3, 7371-7379.	3.5	12
48	Enhanced anti-icing properties of branched PDMS coatings with self-regulated surface patterns. Science China Technological Sciences, 2020, 63, 960-970.	4.0	12
49	CoSn/carbon composite nanofibers for applications as anode in lithium-ion batteries. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	11
50	Grafting of poly(lauryl acrylate) onto nano-silica by â€~click chemistry'. Chemical Research in Chinese Universities, 2014, 30, 339-342.	2.6	11
51	Antifogging and antibacterial properties of amphiphilic coatings based on zwitterionic copolymers. Science China Technological Sciences, 2021, 64, 817-826.	4.0	11
52	In situ encapsulation of hydrogel in ultrafine fibers by suspension electrospinning. Polymer Engineering and Science, 2012, 52, 2695-2704.	3.1	10
53	Effect of degradation of PLGA and PLGA/ \hat{l}^2 -TCP scaffolds on the growth of osteoblasts. Science Bulletin, 2011, 56, 982-986.	1.7	9
54	Improving crystallization behaviors of isotactic polypropylene via a new POSSâ€sorbitol compound. Polymer Engineering and Science, 2017, 57, 357-364.	3.1	9

#	Article	IF	CITATIONS
55	Ceiling Degree of Polymerization for Brush Polymers Prepared via ROMP of Poly(tert-Butyl Acrylate) Macromonomers. Chemical Research in Chinese Universities, 2018, 34, 828-832.	2.6	9
56	Poly(amino acid-hydroxyethyl methacrylate)s with chiral lysine and/or leucine side moieties and their antibacterial abilities for biomedical applications. Materials Science and Engineering C, 2017, 76, 1112-1120.	7.3	8
57	Preparation of fiber-microsphere scaffolds for loading bioactive substances in gradient amounts. Science Bulletin, 2013, 58, 3415-3421.	1.7	7
58	Facile preparation of PLGA microspheres with diverse internal structures by modified doubleâ€emulsion method for controlled release. Polymer Engineering and Science, 2015, 55, 896-906.	3.1	7
59	Friction and wear properties of phenolic composites with dual inorganic oxideâ€modified titanate whiskers. Polymer Composites, 2020, 41, 3282-3293.	4.6	7
60	Self-healing anti-icing coatings prepared from PDMS polyurea. Science China Technological Sciences, 2021, 64, 1535-1543.	4.0	7
61	Degradation of electrospun poly(<scp>L</scp> â€lactide) membranes under cyclic loading. Journal of Applied Polymer Science, 2012, 124, E258.	2.6	6
62	Effect of polyhedral oligomeric silsesquioxane and sorbitol on properties of isotactic polypropylene. Chemical Research in Chinese Universities, 2015, 31, 303-307.	2.6	6
63	Modulation of vascular endothelial cells under shear stress on electrospun membranes containing REDV and microRNA-126. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 1090-1099.	3.4	6
64	Controlled release of dexamethasone from porous PLGA scaffolds under cyclic loading. Science China Chemistry, 2010, 53, 594-598.	8.2	5
65	High impact strength for polypropylene/titanate whisker composites with dual compatibilizing agents. Polymer Composites, 2019, 40, 3421-3428.	4.6	4
66	Enhancing mechanical properties of highâ€density polyethylene/polydopamineâ€modified basalt fiber composites via synergistic compatibilizers. Polymer Composites, 2022, 43, 1136-1146.	4.6	4
67	Low-temperature plasma induced grafting of 2-methacryloyloxyethyl phosphorylcholine onto poly(tetrafluoroethylene) films. Transactions of Tianjin University, 2009, 15, 355-359.	6.4	3
68	Effect of benzyl triethylammonium chloride on microstructure of bicomponent polymeric fibers during electrospinning. Polymer Engineering and Science, 2012, 52, 1661-1671.	3.1	3
69	Carbon nanotubes grown on electrospun polyacrylonitrile-based carbon nanofibers via chemical vapor deposition. Applied Physics A: Materials Science and Processing, 2012, 106, 863-869.	2.3	3
70	Improvement of mechanical properties for epoxy composites with modified titanate whiskers via dopamine self-oxidation. Journal of Polymer Research, 2021, 28, 1.	2.4	3
71	Development of cationic block copolymers for gene delivery. Journal of Controlled Release, 2015, 213, e32.	9.9	2
72	High impact strength of polypropylene composites with complex titanate whiskers/multiwalled carbon nanotubes. Journal of Polymer Research, 2020, 27, 1.	2.4	2

Yunhui Zhao

#	Article	IF	CITATIONS
73	High grafting density of cyclodextrin polymer for fast removal of aromatic compounds from water. RSC Advances, 2015, 5, 47998-48004.	3.6	1
74	Endowing antibacterial ability to poly(Îμ-caprolactone) by blending with cationic â^ zwitterionic copolymers for biomedical purposes. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 885-895.	3.4	1