Jun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/571596/publications.pdf

Version: 2024-02-01

214527 236612 2,728 47 25 47 citations h-index g-index papers 47 47 47 4714 all docs citing authors docs citations times ranked

#	Article	IF	CITATIONS
1	Halide Perovskite Materials for Photo(Electro)Chemical Applications: Dimensionality, Heterojunction, and Performance. Advanced Energy Materials, 2022, 12, 2004002.	10.2	68
2	Challenges of layer-structured cathodes for sodium-ion batteries. Nanoscale Horizons, 2022, 7, 338-351.	4.1	37
3	Zn _{0.52} V ₂ O _{5â^'<i>a</i>} â<1.8 H ₂ O Cathode Stabilized Situ Phase Transformation for Aqueous Zincâ€lon Batteries with Ultraâ€Long Cyclability. Angewandte Chemie, 2022, 134, .	by In 1.6	1
4	Understanding the Ni-rich layered structure materials for high-energy density lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 2607-2622.	3.2	19
5	Unprecedently low thermal conductivity of unique tellurium nanoribbons. Nano Research, 2021, 14, 4725-4731.	5.8	14
6	Advanced TexSy-C Nanocomposites for High-Performance Lithium Ion Batteries. Frontiers in Chemistry, 2021, 9, 687392.	1.8	3
7	Enhanced Interfacial Properties of Thickness-Tunable Carbon Nanosheets for Advanced Lithium–Sulfur Batteries. Energy & Fuels, 2021, 35, 13419-13425.	2.5	6
8	Incorporating ultra-small N-doped Mo2C nanoparticles onto 3D N-doped flower-like carbon nanospheres for robust electrocatalytic hydrogen evolution. Nano Energy, 2021, 86, 106047.	8.2	66
9	Insights of Heteroatoms Dopingâ€Enhanced Bifunctionalities on Carbon Based Energy Storage and Conversion. Advanced Functional Materials, 2021, 31, 2009109.	7.8	58
10	Tailoring conductive networks within hollow carbon nanospheres to host phosphorus for advanced sodium ion batteries. Nano Energy, 2020, 70, 104569.	8.2	29
11	Rapid and Controllable Synthesis of Nanocrystallized Nickelâ€Cobalt Boride Electrode Materials via a Mircoimpinging Stream Reaction for High Performance Supercapacitors. Small, 2020, 16, e2003342.	5.2	39
12	Tailoring Hierarchically Porous Nitrogenâ€; Sulfurâ€Codoped Carbon for Highâ€Performance Supercapacitors and Oxygen Reduction. Small, 2020, 16, e1906584.	5.2	43
13	Origins of Boosted Charge Storage on Heteroatomâ€Doped Carbons. Angewandte Chemie, 2020, 132, 8002-8007.	1.6	20
14	Origins of Boosted Charge Storage on Heteroatomâ€Doped Carbons. Angewandte Chemie - International Edition, 2020, 59, 7928-7933.	7.2	102
15	Mildâ€Temperature Solutionâ€Assisted Encapsulation of Phosphorus into ZIFâ€8 Derived Porous Carbon as Lithiumâ€Ion Battery Anode. Small, 2020, 16, e1907141.	5.2	42
16	Development of novel highly stable synergistic quaternary photocatalyst for the efficient hydrogen evolution reaction. Applied Surface Science, 2020, 510, 145498.	3.1	16
17	Radially Inwardly Aligned Hierarchical Porous Carbon for Ultraâ€Longâ€Life Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2020, 59, 6406-6411.	7.2	100
18	Fundamentals of Electrolytes for Solid-State Batteries: Challenges and Perspectives. Frontiers in Materials, 2020, 7, .	1.2	72

#	Article	IF	Citations
19	Oneâ€step facile synthesis of PbS quantum dots/Pb (DMDC) 2 hybrids and their application as a lowâ€cost SERS substrate. Journal of Raman Spectroscopy, 2019, 50, 1445-1451.	1.2	5
20	High-quality in situ fabricated Nb Josephson junctions with black phosphorus barriers. Superconductor Science and Technology, 2019, 32, 115005.	1.8	4
21	Iron and Nitrogen Coâ€Doped Mesoporous Carbonâ€Based Heterogeneous Catalysts for Selective Reduction of Nitroarenes. Advanced Synthesis and Catalysis, 2019, 361, 3525-3531.	2.1	14
22	Hybrid Organic–Inorganic Thermoelectric Materials and Devices. Angewandte Chemie - International Edition, 2019, 58, 15206-15226.	7.2	138
23	Hybride organischâ€nnorganische thermoelektrische Materialien und Baueinheiten. Angewandte Chemie, 2019, 131, 15348-15370.	1.6	9
24	Hydrogen evolution reaction catalyzed by nickel/nickel phosphide nanospheres synthesized through electrochemical methods. Electrochimica Acta, 2019, 298, 229-236.	2.6	27
25	Encapsulating phosphorus inside carbon nanotubes via a solution approach for advanced lithium ion host. Nano Energy, 2019, 58, 23-29.	8.2	32
26	Heteroatomâ€Doped Porous Carbon Materials with Unprecedented High Volumetric Capacitive Performance. Angewandte Chemie - International Edition, 2019, 58, 2397-2401.	7.2	178
27	Heteroatomâ€Doped Porous Carbon Materials with Unprecedented High Volumetric Capacitive Performance. Angewandte Chemie, 2019, 131, 2419-2423.	1.6	34
28	In Situ Encapsulation of Iron Complex Nanoparticles into Biomassâ€Derived Heteroatomâ€Enriched Carbon Nanotubes for Highâ€Performance Supercapacitors. Advanced Energy Materials, 2019, 9, 1803221.	10.2	86
29	One-step nonlinear electrochemical synthesis of TexSy@PANI nanorod materials for Li-TexSy battery. Energy Storage Materials, 2019, 16, 31-36.	9.5	28
30	Nitrogen and sulfur co-doped porous carbon sheets for energy storage and pH-universal oxygen reduction reaction. Nano Energy, 2018, 54, 192-199.	8.2	83
31	Recent Progress in Biomassâ€Derived Electrode Materials for High Volumetric Performance Supercapacitors. Advanced Energy Materials, 2018, 8, 1801007.	10.2	213
32	Strong Graphene 3D Assemblies with High Elastic Recovery and Hardness. Advanced Materials, 2018, 30, e1707424.	11.1	22
33	A Hierarchical Phosphorus Nanobarbed Nanowire Hybrid: Its Structure and Electrochemical Properties. Nano Letters, 2017, 17, 3376-3382.	4.5	39
34	FeVO4 nanorods supported TiO2 as a superior catalyst for NH3–SCR reaction in a broad temperature range. Catalysis Communications, 2015, 64, 75-79.	1.6	30
35	An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nature Communications, 2015, 6, 5982.	5.8	897
36	Effectively enhance catalytic performance by adjusting pH during the synthesis of active components over FeVO4/TiO2–WO3–SiO2 monolith catalysts. Chemical Engineering Journal, 2015, 271, 1-13.	6.6	48

#	Article	IF	CITATIONS
37	Synthesis of Zirconia–Palladium Core–Shell Nanoparticles as Three-Way Catalysts. Catalysis Letters, 2015, 145, 1420-1428.	1.4	3
38	Size-dependent CO and propylene oxidation activities of platinum nanoparticles on the monolithic Pt/TiO ₂ â€"YO _x diesel oxidation catalyst under simulative diesel exhaust conditions. Catalysis Science and Technology, 2015, 5, 2358-2365.	2.1	45
39	Electrochemical Recognition of Chiral Molecules with Poly(4â€bromoaniline) Modified Gold Electrode. Electroanalysis, 2013, 25, 1975-1980.	1.5	8
40	Structural transformation of carbon electrodes for simultaneous determination of dihydroxybenzene isomers. Electrochemistry Communications, 2012, 21, 73-76.	2.3	11
41	Subtle Photochemical Behavior in Ferroin–Bromate–Benzoquinone Reaction. Journal of Physical Chemistry A, 2012, 116, 386-390.	1.1	4
42	Complex Dynamical Behavior in the Highly Photosensitive Cerium–Bromate–1,4-Benzoquinone Reaction. Journal of Physical Chemistry A, 2012, 116, 8130-8137.	1.1	5
43	Complex kinetics and significant influences of bromine removal in ferroin–bromate–metol reaction. Physical Chemistry Chemical Physics, 2011, 13, 15539.	1.3	9
44	Design of batch minimal bromate oscillator. Chemical Physics Letters, 2011, 508, 320-323.	1.2	4
45	Spiral instabilities in media supporting complex oscillations under periodic forcing. Chaos, 2009, 19, 033134.	1.0	6
46	Current oscillations during the electrochemical oxidation of sulfide in the presence of an external resistor. Science in China Series B: Chemistry, 2008, 51, 333-340.	0.8	8
47	Intermittent spiral breakup in the reaction-diffusion medium exhibiting birhythmic dynamics. Chemical Physics Letters, 2007, 439, 327-331.	1.2	3