Mikael Altun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5715929/publications.pdf Version: 2024-02-01

MIKAEL ALTIIN

#	Article	IF	CITATIONS
1	A Small Molecule Inhibitor of Ubiquitin-Specific Protease-7 Induces Apoptosis in Multiple Myeloma Cells and Overcomes Bortezomib Resistance. Cancer Cell, 2012, 22, 345-358.	7.7	491
2	MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature, 2014, 508, 215-221.	13.7	419
3	Activity-Based Chemical Proteomics Accelerates Inhibitor Development for Deubiquitylating Enzymes. Chemistry and Biology, 2011, 18, 1401-1412.	6.2	348
4	Muscle Wasting in Aged, Sarcopenic Rats Is Associated with Enhanced Activity of the Ubiquitin Proteasome Pathway. Journal of Biological Chemistry, 2010, 285, 39597-39608.	1.6	188
5	Structural basis and specificity of human otubain 1-mediated deubiquitination. Biochemical Journal, 2009, 418, 379-390.	1.7	180
6	Atrogin-1/MAFbx and MuRF1 Are Downregulated in Aging-Related Loss of Skeletal Muscle. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 663-674.	1.7	164
7	Small-molecule inhibitor of OGG1 suppresses proinflammatory gene expression and inflammation. Science, 2018, 362, 834-839.	6.0	156
8	Extended peptide-based inhibitors efficiently target the proteasome and reveal overlapping specificities of the catalytic β-subunits. Chemistry and Biology, 2001, 8, 913-929.	6.2	149
9	Factors contributing to neuromuscular impairment and sarcopenia during aging. Physiology and Behavior, 2007, 92, 129-135.	1.0	147
10	Effects of PS-341 on the Activity and Composition of Proteasomes in Multiple Myeloma Cells. Cancer Research, 2005, 65, 7896-7901.	0.4	130
11	The ERâ€resident ubiquitinâ€specific protease 19 participates in the UPR and rescues ERAD substrates. EMBO Reports, 2009, 10, 755-761.	2.0	125
12	Behavioral impairments of the aging rat. Physiology and Behavior, 2007, 92, 911-923.	1.0	117
13	Cancer-Specific Synthetic Lethality between ATR and CHK1 Kinase Activities. Cell Reports, 2016, 14, 298-309.	2.9	105
14	Deubiquitinating Enzyme Specificity for Ubiquitin Chain Topology Profiled by Di-Ubiquitin Activity Probes. Chemistry and Biology, 2013, 20, 1447-1455.	6.2	103
15	Iron load and redox stress in skeletal muscle of aged rats. Muscle and Nerve, 2007, 36, 223-233.	1.0	73
16	Ubiquitin-specific Protease 19 (USP19) Regulates Hypoxia-inducible Factor 1α (HIF-1α) during Hypoxia. Journal of Biological Chemistry, 2012, 287, 1962-1969.	1.6	71
17	Postâ€ŧranslational modification of the deubiquitinating enzyme otubain 1 modulates active RhoA levels and susceptibility to <i>Yersinia</i> invasion. FEBS Journal, 2010, 277, 2515-2530.	2.2	65
18	Targeting <scp>CDK</scp> 2 overcomes melanoma resistance against <scp>BRAF</scp> and Hsp90 inhibitors. Molecular Systems Biology, 2018, 14, e7858.	3.2	53

Mikael Altun

#	Article	IF	CITATIONS
19	A Photoreactive Small-Molecule Probe for 2-Oxoglutarate Oxygenases. Chemistry and Biology, 2011, 18, 642-654.	6.2	46
20	Detection of ubiquitin–proteasome enzymatic activities in cells: Application of activity-based probes to inhibitor development. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 2029-2037.	1.9	41
21	The Human Otubain2-Ubiquitin Structure Provides Insights into the Cleavage Specificity of Poly-Ubiquitin-Linkages. PLoS ONE, 2015, 10, e0115344.	1.1	31
22	Targeting OGG1 arrests cancer cell proliferation by inducing replication stress. Nucleic Acids Research, 2020, 48, 12234-12251.	6.5	29
23	The chromatin-remodeling factor <i>CHD4</i> is required for maintenance of childhood acute myeloid leukemia. Haematologica, 2018, 103, 1169-1181.	1.7	26
24	The exon-junction complex helicase eIF4A3 controls cell fate via coordinated regulation of ribosome biogenesis and translational output. Science Advances, 2021, 7, .	4.7	25
25	Cell Cycle Profiling Reveals Protein Oscillation, Phosphorylation, and Localization Dynamics. Molecular and Cellular Proteomics, 2020, 19, 608-623.	2.5	22
26	Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells. PLoS ONE, 2017, 12, e0188772.	1.1	22
27	Label-free quantitative proteomics reveals regulation of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) and 5'-3'-exoribonuclease 2 (XRN2) during respiratory syncytial virus infection. Virology Journal, 2011, 8, 442.	1.4	20
28	Differential regulation of Shc adaptor proteins in skeletal muscle, spinal cord and forebrain of aged rats with sensorimotor impairment. Aging Cell, 2003, 2, 47-57.	3.0	14
29	Fluorescence-based active site probes for profiling deubiquitinating enzymes. Organic and Biomolecular Chemistry, 2012, 10, 3379.	1.5	14
30	Development of a chemical probe against NUDT15. Nature Chemical Biology, 2020, 16, 1120-1128.	3.9	14
31	An N-terminal SIAH-interacting motif regulates the stability of the ubiquitin specific protease (USP)-19. Biochemical and Biophysical Research Communications, 2013, 433, 390-395.	1.0	12
32	The histone chaperone NAP1L3 is required for haematopoietic stem cell maintenance and differentiation. Scientific Reports, 2018, 8, 11202.	1.6	9
33	Muscle atrophy and regeneration associated with behavioural loss and recovery of function after sciatic nerve crush. Acta Physiologica, 2019, 227, e13335.	1.8	9
34	The Next Step Forward in Ubiquitin-Specific Protease 7 Selective Inhibition. Cell Chemical Biology, 2017, 24, 1429-1431.	2.5	8
35	Involvement of Autophagy in Levodopaâ€Induced Dyskinesia. Movement Disorders, 2021, 36, 1137-1146.	2.2	8
36	Retrograde labeling of primary sensory neurons with fluorescent latex microspheres: a useful tool for long term tagging of neurons. Journal of Neuroscience Methods, 2001, 108, 19-24.	1.3	7

Mikael Altun

#	Article	IF	CITATIONS
37	Cellular Degradation Machineries in Age-Related Loss of Muscle Mass (Sarcopenia). , 0, , .		6
38	Photoactivable peptides for identifying enzyme–substrate and protein–protein interactions. Chemical Communications, 2011, 47, 1488-1490.	2.2	5
39	Inhibition of the ubiquitin-proteasome system by an NQO1-activatable compound. Cell Death and Disease, 2021, 12, 914.	2.7	3
40	Impact of vitamin D and vitamin D receptor TaqI polymorphism in primary human myoblasts. Endocrine Connections, 2019, 8, 1070-1081.	0.8	1
41	Abstract 105: MTH1 promotes mitotic progression to avoid oxidative DNA damage in cancer cells. , 2019, , .		0