Young Min Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5714824/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microstructural characteristics and low-cycle fatigue properties of AZ91 and AZ91–Ca–Y alloys extruded at different temperatures. Journal of Magnesium and Alloys, 2023, 11, 892-902.	11.9	9
2	Aging Hardening and Precipitation Characteristics of Extruded Mg–9Al–0.8Zn–0.2Mn–0.3Ca–0.2Y Alloy. Metals and Materials International, 2023, 29, 381-389.	3.4	5
3	Tensile and High-Cycle Fatigue Properties of Extruded AZ91–0.3Ca–0.2Y Alloy with Excellent Corrosion and Ignition Resistances. Metals and Materials International, 2022, 28, 385-396.	3.4	9
4	Corrosion Behavior of Gravity Cast and High-Pressure Die-Cast AM60 Mg Alloys with Ca and Y Addition. Metals, 2022, 12, 495.	2.3	0
5	Effects of the Al Content on the Evolution of Quadruple Basal Textures in Mg-xAl-1Zn-0.1Mn-0.1Ca-0.2Y Alloy Sheets Processed via Cold Rolling and Annealing. Metals, 2022, 12, 499.	2.3	1
6	Non-flammable magnesium sheet alloys with an excellent age-hardenability. Scripta Materialia, 2022, 219, 114880.	5.2	2
7	Significant Improvement in Extrudability of Mg–9Al–0.8Zn–0.9Ca–0.6Y Alloy Through Mischmetal Addition. Metals and Materials International, 2021, 27, 514-521.	3.4	18
8	Unusual relationship between extrusion temperature and tensile strength of extruded Mg–Al–Zn–Ca–Y–MM alloy. Journal of Alloys and Compounds, 2021, 862, 158051.	5.5	10
9	Effects of Extrusion Speed on the Microstructure and Mechanical Properties of Mg–9Al–0.8Zn–0.9Ca–0.6Y–0.5MM Alloy. Metals and Materials International, 2021, 27, 530-537.	3.4	24
10	Scale-Up Study of Molten Salt Electrolysis using Cu or Ag Cathode and Vacuum Distillation for the Production of High-Purity Mg Metal from MgO. Journal of Sustainable Metallurgy, 2021, 7, 883-897.	2.3	14
11	Development of a novel electrolytic process for producing high-purity magnesium metal from magnesium oxide using a liquid tin cathode. Journal of Magnesium and Alloys, 2021, 9, 1644-1655.	11.9	27
12	Comparative study of tensile and high-cycle fatigue properties of extruded AZ91 and AZ91–0.3Ca–0.2Y alloys. Journal of Materials Science and Technology, 2021, 93, 41-52.	10.7	20
13	Molten Salt Electrolysis of Magnesium Oxide Using a Liquid–Metal Cathode for the Production of Magnesium Metal. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 2993-3006.	2.1	19
14	Microstructural evolution and mechanical properties of binary Mg–xBi (x = 2, 5, and 8 wt%) alloys. Journal of Magnesium and Alloys, 2020, 9, 983-983.	11.9	29
15	Effects of combined addition of Ca and Y on the corrosion behaviours of die-cast AZ91D magnesium alloy. Corrosion Science, 2020, 166, 108451.	6.6	56
16	Influence of extrusion temperature on dynamic deformation behaviors and mechanical properties of Mg-8Al-0.5Zn-0.2Mn-0.3Ca-0.2Y alloy. Journal of Materials Research and Technology, 2019, 8, 5254-5270.	5.8	43
17	Grain size effect on twinning and annealing behaviors of rolled magnesium alloy with bimodal structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 754, 38-45.	5.6	31
18	Modification of Microstructure and Texture in Highly Non-Flammable Mg-Al-Zn-Y-Ca Alloy Sheets by Controlled Thermomechanical Processes. Metals, 2019, 9, 181.	2.3	12

Young Min Kim

#	Article	IF	CITATIONS
19	Texture tailoring and bendability improvement of rolled AZ31 alloy using {10–12} twinning: The effect of precompression levels. Journal of Magnesium and Alloys, 2019, 7, 648-660.	11.9	38
20	Recent Progress and Development in Extrusion of Rare Earth Free Mg Alloys: A Review. Acta Metallurgica Sinica (English Letters), 2019, 32, 145-168.	2.9	74
21	Sequential precipitation behavior of Mg17Al12 and Mg2Sn in Mg-8Al-2Sn-1Zn alloys. Journal of Alloys and Compounds, 2018, 749, 794-802.	5.5	23
22	Microstructural evolution and improvement in mechanical properties of extruded AZ31 alloy by combined addition of Ca and Y. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 309-318.	5.6	48
23	Microstructure and mechanical properties of non-flammable Mg-8Al-0.3Zn-0.1Mn-0.3Ca-0.2Y alloy subjected to low-temperature, low-speed extrusion. Journal of Alloys and Compounds, 2018, 739, 69-76.	5.5	38
24	Static recrystallization behaviour of cold rolled Mg-Zn-Y alloy and role of solute segregation in microstructure evolution. Scripta Materialia, 2017, 136, 41-45.	5.2	56
25	A new high-strength extruded Mg-8Al-4Sn-2Zn alloy. Materials Letters, 2015, 139, 35-38.	2.6	79
26	Oxidation and Corrosion Behavior of Non-Flammable Magnesium Alloys Containing Ca and Y. , 2014, , 325-329.		3
27	Strain-dependent constitutive analysis of hot deformation and hot workability of T4-treated ZK60 magnesium alloy. Metals and Materials International, 2013, 19, 651-665.	3.4	23
28	Effects of extrusion speed on the microstructure and mechanical properties of ZK60 alloys with and without 1wt% cerium addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 583, 25-35.	5.6	87
29	Key factor influencing the ignition resistance of magnesium alloys at elevated temperatures. Scripta Materialia, 2011, 65, 958-961.	5.2	123
30	Effect of magnesium carbonate on microstructure and rolling behaviors of AZ31 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1485-1490.	5.6	18
31	Effect of the Ca content on the microstructural evolution of Ca containing AZ31 cast alloys. Metals and Materials International, 2011, 17, 583-586.	3.4	19
32	Grain refinement of Mg–Al cast alloy by the addition of manganese carbonate. Journal of Alloys and Compounds, 2010, 490, 695-699.	5.5	45
33	Effect of hafnium carbide on the grain refinement of Mg-3wt.% Al alloy. Journal of Alloys and Compounds, 2010, 500, L12-L15.	5.5	15
34	Transformation behavior and microstructural characteristics of acicular ferrite in linepipe steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 478, 361-370.	5.6	116
35	Effect of Ca Addition on the Corrosion Resistance of Gravity Cast AZ31 Magnesium Alloy. Materials Transactions, 2007, 48, 1023-1028.	1.2	34