
Xiaobing Lou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5714166/publications.pdf Version: 2024-02-01

XIAORING LOU

#	Article	IF	CITATIONS
1	Self-assembled 3D NixCo3-xO4 pseudocube superstructure as potential anode material for Li-Ion batteries. Journal of Alloys and Compounds, 2020, 814, 152319.	2.8	8
2	A rings-in-pores net: crown ether-based covalent organic frameworks for phase-transfer catalysis. Chemical Communications, 2020, 56, 595-598.	2.2	39
3	A green ligand-based copper–organic framework: a high-capacity lithium storage material and insight into its abnormal capacity-increase behavior. New Journal of Chemistry, 2020, 44, 17899-17905.	1.4	10
4	Reversible phase transition enabled by binary Ba and Ti-based surface modification for high voltage LiCoO2 cathode. Journal of Power Sources, 2019, 438, 226954.	4.0	38
5	Low-temperature pseudomorphic transformation of polyhedral MIL-88A to lithium ferrite (LiFe ₃ O ₅) in aqueous LiOH medium toward high Li storage. Nanoscale, 2019, 11, 11892-11901.	2.8	5
6	A comprehensive study on the generation of reactive oxygen species in Cu-AÎ ² -catalyzed redox processes. Free Radical Biology and Medicine, 2019, 135, 125-131.	1.3	16
7	Unveiling the benefits of potassium doping on the structural integrity of Li–Mn-rich layered oxides during prolonged cycling by dual-mode EPR spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 24017-24025.	1.3	19
8	Retarding Phase Transformation During Cycling in a Lithium―and Manganeseâ€Rich Cathode Material by Optimizing Synthesis Conditions. ChemElectroChem, 2019, 6, 1385-1392.	1.7	8
9	Reversible High-Voltage N-Redox Chemistry in Metal–Organic Frameworks for High-Rate Anion-Intercalation Batteries. ACS Applied Energy Materials, 2019, 2, 413-419.	2.5	14
10	Exploring the Capacity Limit: A Layered Hexacarboxylate-Based Metal–Organic Framework for Advanced Lithium Storage. Inorganic Chemistry, 2018, 57, 3126-3132.	1.9	41
11	High-energy nanostructured Na ₃ V ₂ (PO ₄) ₂ O _{1.6} F _{1.4} cathodes for sodium-ion batteries and a new insight into their redox chemistry. Journal of Materials Chemistry A, 2018, 6, 8340-8348.	5.2	39
12	Customâ€Made Ceria Nanoparticles Show a Neuroprotective Effect by Modulating Phenotypic Polarization of the Microglia. Angewandte Chemie, 2018, 130, 5910-5914.	1.6	15
13	Customâ€Made Ceria Nanoparticles Show a Neuroprotective Effect by Modulating Phenotypic Polarization of the Microglia. Angewandte Chemie - International Edition, 2018, 57, 5808-5812.	7.2	133
14	Green and Rational Design of 3D Layer-by-Layer MnO <i>_x</i> Hierarchically Mesoporous Microcuboids from MOF Templates for High-Rate and Long-Life Li-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 14684-14697.	4.0	55
15	Carbon-coated Li3V2(PO4)3 derived from metal-organic framework as cathode for lithium-ion batteries with high stability. Electrochimica Acta, 2018, 271, 608-616.	2.6	52
16	One-Pot Synthesis of Co-Based Coordination Polymer Nanowire for Li-Ion Batteries with Great Capacity and Stable Cycling Stability. Nano-Micro Letters, 2018, 10, 19.	14.4	33
17	Unraveling the Redox Couples of V ^{III} /V ^{IV} Mixed-Valent Na ₃ V ₂ (PO ₄) ₂ O _{1.6} F _{1.4} Cathode by Parallel-Mode EPR and In Situ/Ex Situ NMR. Journal of Physical Chemistry C, 2018, 122, 27224-27232.	1.5	35
18	Mitigating voltage decay in high-capacity Li1.2Ni0.2Mn0.6O2 cathode material by surface K+ doping. Electrochimica Acta, 2018, 291, 278-286.	2.6	27

XIAOBING LOU

#	Article	IF	CITATIONS
19	Centrifugal Field Guided Dual Templating Synthesis of Functional Macroâ€Microporous Carbon. Particle and Particle Systems Characterization, 2018, 35, 1800262.	1.2	4
20	The effect of nitrogen and oxygen coordination: toward a stable anode for reversible lithium storage. New Journal of Chemistry, 2018, 42, 15698-15704.	1.4	6
21	Reduction of the 13C cross-polarization experimental time for pharmaceutical samples with long T1 by ball milling in solid-state NMR. Solid State Nuclear Magnetic Resonance, 2018, 94, 20-25.	1.5	6
22	Bimetallic zeolite imidazolate framework for enhanced lithium storage boosted by the redox participation of nitrogen atoms. Science China Materials, 2018, 61, 1040-1048.	3.5	39
23	Room-temperature synthesis of a cobalt 2,3,5,6-tetrafluoroterephthalic coordination polymer with enhanced capacity and cycling stability for lithium batteries. New Journal of Chemistry, 2017, 41, 1813-1819.	1.4	31
24	Mesoporous cobalt 2,5-thiophenedicarboxylic coordination polymer for high performance Na-ion batteries. Materials Letters, 2017, 197, 245-248.	1.3	15
25	High-capacity cobalt-based coordination polymer nanorods and their redox chemistry triggered by delocalization of electron spins. Energy Storage Materials, 2017, 7, 195-202.	9.5	28
26	Hierarchical CuO octahedra inherited from copper metal–organic frameworks: high-rate and high-capacity lithium-ion storage materials stimulated by pseudocapacitance. Journal of Materials Chemistry A, 2017, 5, 12828-12837.	5.2	80
27	Amorphization and disordering of metal–organic framework materials for rechargeable batteries by thermal treatment. New Journal of Chemistry, 2017, 41, 6415-6419.	1.4	14
28	Remarkable improvement in the lithium storage property of Co2(OH)2BDC MOF by covalent stitching to graphene and the redox chemistry boosted by delocalized electron spins. Chemical Engineering Journal, 2017, 326, 1000-1008.	6.6	53
29	Pillared-Layer Metal–Organic Frameworks for Improved Lithium-Ion Storage Performance. ACS Applied Materials & Interfaces, 2017, 9, 21839-21847.	4.0	66
30	Ultrathin Cobaltâ€Based Metal–Organic Framework Nanosheets with Both Metal and Ligand Redox Activities for Superior Lithium Storage. Chemistry - A European Journal, 2017, 23, 15984-15990.	1.7	77
31	Highly reversible lithium storage in cobalt 2,5-dioxido-1,4-benzenedicarboxylate metal-organic frameworks boosted by pseudocapacitance. Journal of Colloid and Interface Science, 2017, 506, 365-372.	5.0	31
32	Ultrathin Manganese-Based Metal–Organic Framework Nanosheets: Low-Cost and Energy-Dense Lithium Storage Anodes with the Coexistence of Metal and Ligand Redox Activities. ACS Applied Materials & Interfaces, 2017, 9, 29829-29838.	4.0	131
33	Facile synthesis of the Basolite F300-like nanoscale Fe-BTC framework and its lithium storage properties. RSC Advances, 2016, 6, 114483-114490.	1.7	79
34	Capacity control of ferric coordination polymers by zinc nitrate for lithium-ion batteries. RSC Advances, 2016, 6, 86126-86130.	1.7	42
35	The organic-moiety-dominated Li ⁺ intercalation/deintercalation mechanism of a cobalt-based metal–organic framework. Journal of Materials Chemistry A, 2016, 4, 16245-16251.	5.2	116
36	A thermally activated manganese 1,4-benzenedicarboxylate metal organic framework with high anodic capability for Li-ion batteries. New Journal of Chemistry, 2016, 40, 9746-9752.	1.4	104

XIAOBING LOU

#	Article	IF	CITATIONS
37	Cobalt-based metal organic framework with superior lithium anodic performance. Journal of Solid State Chemistry, 2016, 242, 71-76.	1.4	130
38	A novel coordination polymer based on Co(<scp>ii</scp>) hexanuclear clusters with azide and carboxylate bridges: structure, magnetism and its application as a Li-ion battery anode. Dalton Transactions, 2016, 45, 19109-19116.	1.6	34
39	Controlled synthesis of Co _x Mn _{3â^²x} O ₄ nanoparticles with a tunable composition and size for high performance lithium-ion batteries. RSC Advances, 2016, 6, 54270-54276.	1.7	14
40	High Anodic Performance of Co 1,3,5-Benzenetricarboxylate Coordination Polymers for Li-Ion Battery. ACS Applied Materials & Interfaces, 2016, 8, 15352-15360.	4.0	181
41	Reversible lithium storage in manganese and cobalt 1,2,4,5-benzenetetracarboxylate metal–organic framework with high capacity. RSC Advances, 2016, 6, 61319-61324.	1.7	45
42	Bimetallic coordination polymer as a promising anode material for lithium-ion batteries. Chemical Communications, 2016, 52, 2035-2038.	2.2	65
43	Mesoporous nanostructured Co ₃ O ₄ derived from MOF template: a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 5585-5591.	5.2	255
44	Complexation of Linear Aliphatic Ester, Aldehyde and Ketone Guests by Perâ€ethylated Pillar[5]arene. Chinese Journal of Chemistry, 2015, 33, 335-338.	2.6	13
45	Synthesis of a cationic water-soluble pillar[6]arene and its effective complexation towards naphthalenesulfonate guests. Chemical Communications, 2013, 49, 7956.	2.2	79