Jorge GironÃ;s

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5713845/publications.pdf

Version: 2024-02-01

257450 315739 1,744 83 24 38 citations g-index h-index papers 89 89 89 2275 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A new applications manual for the Storm Water Management Model (SWMM). Environmental Modelling and Software, 2010, 25, 813-814.	4.5	250
2	Water Footprint of Cities: A Review and Suggestions for Future Research. Sustainability, 2015, 7, 8461-8490.	3.2	85
3	An integrated analysis of the March 2015 Atacama floods. Geophysical Research Letters, 2016, 43, 8035-8043.	4.0	83
4	Potential of Particle Matter Dry Deposition on Green Roofs and Living Walls Vegetation for Mitigating Urban Atmospheric Pollution in Semiarid Climates. Sustainability, 2018, 10, 2431.	3.2	66
5	Evaluation of Methods for Representing Urban Terrain in Storm-Water Modeling. Journal of Hydrologic Engineering - ASCE, 2010, 15, 1-14.	1.9	52
6	Influence of vegetation, substrate, and thermal insulation of an extensive vegetated roof on the thermal performance of retail stores in semiarid and marine climates. Energy and Buildings, 2017, 146, 312-321.	6.7	49
7	Assessing groundwater recharge in an Andean closed basin using isotopic characterization and a rainfall-runoff model: Salar del Huasco basin, Chile. Hydrogeology Journal, 2015, 23, 1535-1551.	2.1	48
8	Using the Weather Research and Forecasting (WRF) Model for Precipitation Forecasting in an Andean Region with Complex Topography. Atmosphere, 2018, 9, 304.	2.3	44
9	Effect of substrate depth and roof layers on green roof temperature and water requirements in a semi-arid climate. Ecological Engineering, 2016, 97, 624-632.	3.6	42
10	A morpho-climatic instantaneous unit hydrograph model for urban catchments based on the kinematic wave approximation. Journal of Hydrology, 2009, 377, 317-334.	5.4	41
11	Spatial estimation of daily precipitation in regions with complex relief and scarce data using terrain orientation. Journal of Hydrology, 2014, 517, 481-492.	5.4	41
12	Water–food–energy nexus in Chile: the challenges due to global change in different regional contexts. Water International, 2015, 40, 839-855.	1.0	38
13	Irrigation of green spaces and residential gardens in a Mediterranean metropolis: Gaps and opportunities for climate change adaptation. Landscape and Urban Planning, 2019, 182, 34-43.	7.5	38
14	Comparison of catchment and network delineation approaches in complex suburban environments: application to the Chaudanne catchment, France. Hydrological Processes, 2013, 27, 3747-3761.	2.6	35
15	A stochastic model of streamflow for urbanized basins. Water Resources Research, 2014, 50, 1984-2001.	4.2	33
16	Exploring possible connections between hydrological extreme events and climate change in central south Chile. Hydrological Sciences Journal, 2013, 58, 1598-1619.	2.6	30
17	Integrated Water Resource Management and Energy Requirements for Water Supply in the Copiap \tilde{A}^3 River Basin, Chile. Water (Switzerland), 2014, 6, 2590-2613.	2.7	28
18	Water security as a challenge for the sustainability of La Serena-Coquimbo conurbation in northern Chile: global perspectives and adaptation. Mitigation and Adaptation Strategies for Global Change, 2016, 21, 1235-1246.	2.1	27

#	Article	IF	CITATIONS
19	Incorporating climate change adaptation strategies in urban water supply planning: the case of central Chile. Journal of Water and Climate Change, 2014, 5, 357-376.	2.9	26
20	A GIS-based urban and peri-urban landscape representation toolbox for hydrological distributed modeling. Environmental Modelling and Software, 2017, 91, 168-185.	4.5	26
21	Using a Hydrological Model to Simulate the Performance and Estimate the Runoff Coefficient of Green Roofs in Semiarid Climates. Water (Switzerland), 2018, 10, 198.	2.7	26
22	Assessment of evaporation and water fluxes in a column of dry saline soil subject to different water table levels. Hydrological Processes, 2014, 28, 3655-3669.	2.6	25
23	Experimental Study of the Thermal Performance of Living Walls Under Semiarid Climatic Conditions. Energy Procedia, 2015, 78, 3416-3421.	1.8	25
24	Scientists, Policymakers, and Stakeholders Plan for Climate Change: A Promising Approach in Chile's Maipo Basin. Environment, 2016, 58, 24-37.	1.4	25
25	Integrating strategic land use planning in the construction of future land use scenarios and its performance: The Maipo River Basin, Chile. Land Use Policy, 2018, 78, 353-366.	5.6	24
26	Porous Media Characterization to Simulate Water and Heat Transport through Green Roof Substrates. Vadose Zone Journal, 2017, 16, 1-14.	2.2	23
27	Drought Propagation in Semi-Arid River Basins in Latin America: Lessons from Mexico to the Southern Cone. Water (Switzerland), 2018, 10, 1564.	2.7	23
28	Influence of Plant and Substrate Characteristics of Vegetated Roofs on a Supermarket Energy Performance Located in a Semiarid Climate. Energy Procedia, 2015, 78, 1171-1176.	1.8	22
29	Understanding the preferences for different types of urban greywater uses and the impact of qualitative attributes. Water Research, 2020, 184, 116007.	11.3	22
30	The geomorphometry of endorheic drainage basins: implications for interpreting and modelling their evolution. Earth Surface Processes and Landforms, 2013, 38, 1881-1896.	2.5	21
31	Experimental Analysis and Modeling of a Stormwater Perlite Filter. Water Environment Research, 2008, 80, 524-539.	2.7	20
32	Anthropogenic controls from urban growth on flow regimes. Advances in Water Resources, 2015, 84, 125-135.	3.8	18
33	Planform geometry and relief characterization of drainage networks in high-relief environments: An analysis of Chilean Andean basins. Geomorphology, 2019, 341, 46-64.	2.6	17
34	Experiences of voluntary early participation in Environmental Impact Assessments in Chilean mining. Environmental Impact Assessment Review, 2019, 74, 43-53.	9.2	17
35	Impact of the Properties of a Green Roof Substrate on its Hydraulic and Thermal Behavior. Energy Procedia, 2015, 78, 1177-1182.	1.8	16
36	A model for simulating the performance and irrigation of green stormwater facilities at residential scales in semiarid and Mediterranean regions. Environmental Modelling and Software, 2017, 95, 246-257.	4.5	16

#	Article	IF	Citations
37	Assessing Reservoir Performance under Climate Change. When Is It Going to Be Too Late If Current Water Management Is Not Changed?. Water (Switzerland), 2021, 13, 64.	2.7	16
38	Effect of urbanization on the long-term persistence of streamflow records. Physica A: Statistical Mechanics and Its Applications, 2016, 447, 208-221.	2.6	15
39	Computer-assisted mesh generation based on hydrological response units for distributed hydrological modeling. Computers and Geosciences, 2013, 57, 32-43.	4.2	14
40	Modelling evaporation processes in soils from the Huasco salt flat basin, Chile. Hydrological Processes, 2016, 30, 4704-4719.	2.6	14
41	Impact of Urban Growth and High Residential Irrigation on Streamflow and Groundwater Levels in a Periâ€Urban Semiarid Catchment. Journal of the American Water Resources Association, 2019, 55, 720-739.	2.4	14
42	Assessing the impact of travel time formulations on the performance of spatially distributed travel time methods applied to hillslopes. Journal of Hydrology, 2014, 519, 1315-1327.	5.4	13
43	A Dynamic, Multivariate Sustainability Measure for Robust Analysis of Water Management under Climate and Demand Uncertainty in an Arid Environment. Water (Switzerland), 2015, 7, 5928-5958.	2.7	13
44	Daily Freeze–Thaw Cycles Affect the Transport of Metals in Streams Affected by Acid Drainage. Water (Switzerland), 2016, 8, 74.	2.7	13
45	Using a Statistical Preanalysis Approach as an Ensemble Technique for the Unbiased Mapping of GCM Changes to Local Stations. Journal of Hydrometeorology, 2018, 19, 1447-1465.	1.9	13
46	Observed trends and relationships between ENSO and standardized hydrometeorological drought indices in central Chile. Hydrological Processes, 2020, 34, 159-174.	2.6	13
47	Global sensitivity analysis of hydrologic processes in major snowâ€dominated mountainous river basins in Colorado. Hydrological Processes, 2014, 28, 3404-3418.	2.6	12
48	Estimating the Local Time of Emergence of Climatic Variables Using an Unbiased Mapping of GCMs: An Application in Semiarid and Mediterranean Chile. Journal of Hydrometeorology, 2019, 20, 1635-1647.	1.9	12
49	Vulnerability of water systems: a comprehensive framework for its assessment and identification of adaptation strategies. Desalination and Water Treatment, 2016, 57, 2243-2255.	1.0	11
50	From Multi-Risk Evaluation to Resilience Planning: The Case of Central Chilean Coastal Cities. Water (Switzerland), 2019, 11, 572.	2.7	11
51	Daily and seasonal variation of the surface temperature lapse rate and O°C isotherm height in the western subtropical Andes. International Journal of Climatology, 2021, 41, E980.	3.5	11
52	Using hybrid choice models to capture the impact of attitudes on residential greywater reuse preferences. Resources, Conservation and Recycling, 2021, 164, 105171.	10.8	11
53	Forecasting flood hazards in real time: a surrogate model for hydrometeorological events in an Andean watershed. Natural Hazards and Earth System Sciences, 2020, 20, 3261-3277.	3.6	11
54	Multisite Assessment of Hydrologic Processes in Snow-Dominated Mountainous River Basins in Colorado Using a Watershed Model. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	1.9	10

#	Article	IF	CITATIONS
55	Groundwater Contribution to Sewer Network Baseflow in an Urban Catchment-Case Study of Pin Sec Catchment, Nantes, France. Water (Switzerland), 2020, 12, 689.	2.7	10
56	Cooling potential of greenery systems for a stand-alone retail building under semiarid and humid subtropical climates. Energy and Buildings, 2022, 259, 111897.	6.7	10
57	Spatial characterization of catchment dispersion mechanisms in an urban context. Advances in Water Resources, 2014, 74, 290-301.	3 . 8	8
58	Improving Stochastic Modelling of Daily Rainfall Using the ENSO Index: Model Development and Application in Chile. Water (Switzerland), 2018, 10, 145.	2.7	8
59	Hydrological Functioning of an Evolving Urban Stormwater Network. Water Resources Research, 2019, 55, 6517-6533.	4.2	8
60	Meteorological Characterization of Large Daily Flows in a High-Relief Ungauged Basin Using Principal Component Analysis. Journal of Hydrologic Engineering - ASCE, 2019, 24, .	1.9	6
61	On the Influence of Upstream Flow Contributions on the Basin Response Function for Hydrograph Prediction. Water Resources Research, 2019, 55, 4915-4935.	4.2	6
62	Spatio-temporal estimation of climatic variables for gap filling and record extension using Reanalysis data. Theoretical and Applied Climatology, 2019, 137, 1089-1104.	2.8	6
63	From mathematical models to policy design: Predicting greywater reuse scheme effectiveness and water reclamation benefits based on individuals' preferences. Sustainable Cities and Society, 2021, 74, 103132.	10.4	5
64	Modeling changes to the hydrodynamic characteristics of agglomerated copper tailings. Hydrometallurgy, 2011, 109, 175-180.	4.3	4
65	Seasonal hydroclimatic ensemble forecasts anticipate nutrient and suspended sediment loads using a dynamical-statistical approach. Environmental Research Letters, 2019, 14, 084016.	5.2	4
66	Creating an enabling environment for WR&R implementation. Water Science and Technology, 2017, 76, 1555-1564.	2.5	3
67	A rule-based approach for preventive identification of potential conflictive criteria in mining operations in Chile. Journal of Cleaner Production, 2018, 184, 559-568.	9.3	3
68	Impacts of Channel Network Type on the Unit Hydrograph. Water (Switzerland), 2020, 12, 669.	2.7	3
69	Capturing and analysing heterogeneity in residential greywater reuse preferences using a latent class model. Journal of Environmental Management, 2021, 279, 111673.	7.8	3
70	Decomposition of 2D polygons and its effect in hydrological models. Journal of Hydroinformatics, 2019, 21, 104-122.	2.4	2
71	Precipitation, Temperature and Evaporation. World Water Resources, 2021, , 31-60.	0.4	2
72	Advanced numerical models for the propagation of floods with high-sediment concentrations in mountain rivers. E3S Web of Conferences, 2018, 40, 06039.	0.5	1

#	Article	lF	CITATIONS
73	Floods. World Water Resources, 2021, , 153-171.	0.4	1
74	Country Profile. World Water Resources, 2021, , 1-5.	0.4	1
75	Experimental Analysis and Modeling of a Stormwater Perlite Filter. , 2006, , 1.		O
76	Improvement of the EXTRAN Block in Storm Water Management Model (SWMM4.4h)., 2006,,.		0
77	Morphologic Approach in Studying Urbanized and Suburbanizing Watersheds. , 2007, , 1.		O
78	River Mouths and Coastal Lagoons in Central Chile. , 2017, , 15-46.		0
79	Impacts of Urbanization and Land Use Change over Water Resources. World Water Resources, 2021, , 365-387.	0.4	O
80	Multivariate Standardized Drought Indices to Identify Drought Events: Application in the Maipo River Basin., 2021,, 141-160.		0
81	Challenges for the Future. World Water Resources, 2021, , 409-433.	0.4	O
82	A Spatial Analysis of Dispersion Mechanisms in the Hydrological Response Using a Spatially Distributed Travel Time Model. Water Resources Research, 2022, 58, .	4.2	0
83	Impactos y Adaptación en Infraestructura. , 1905, , 375-404.		O