
Frank Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5713828/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Circuits, hormones, and learning: Vocal behavior in songbirds. , 1997, 33, 602-618.		231
2	Topographic organization of a forebrain pathway involved with vocal learning in zebra finches. Journal of Comparative Neurology, 1995, 358, 260-278.	1.6	151
3	Neurotrophins Suppress Apoptosis Induced by Deafferentation of an Avian Motor-Cortical Region. Journal of Neuroscience, 1997, 17, 2101-2111.	3.6	111
4	Growth and regression of thalamic efferents in the song-control system of male zebra finches. Journal of Comparative Neurology, 1992, 326, 442-450.	1.6	86
5	Differential estrogen accumulation among populations of projection neurons in the higher vocal center of male canaries. Journal of Neurobiology, 1995, 26, 87-108.	3.6	84
6	CB1 cannabinoid receptor expression in brain regions associated with zebra finch song control. Brain Research, 2000, 857, 151-157.	2.2	61
7	Quantifying song bout production during zebra finch sensory-motor learning suggests a sensitive period for vocal practice. Behavioural Brain Research, 2002, 131, 57-65.	2.2	60
8	Impact of experience-dependent and -independent factors on gene expression in songbird brain. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17245-17252.	7.1	55
9	HVC microlesions do not destabilize the vocal patterns of adult male zebra finches with prior ablation of LMAN. Developmental Neurobiology, 2007, 67, 205-218.	3.0	50
10	Auditory-Dependent Vocal Recovery in Adult Male Zebra Finches Is Facilitated by Lesion of a Forebrain Pathway That Includes the Basal Ganglia. Journal of Neuroscience, 2007, 27, 12308-12320.	3.6	48
11	Cannabinoid exposure alters learning of zebra finch vocal patterns. Developmental Brain Research, 2003, 142, 215-217.	1.7	45
12	Electrophysiological characterization and computational models of HVC neurons in the zebra finch. Journal of Neurophysiology, 2013, 110, 1227-1245.	1.8	37
13	Post-transcriptional regulation of zenk expression associated with zebra finch vocal development. Molecular Brain Research, 2000, 80, 279-290.	2.3	36
14	Female zebra finches do not sing yet share neural pathways necessary for singing in males. Journal of Comparative Neurology, 2019, 527, 843-855.	1.6	35
15	Influence of food and water availability on undirected singing and energetic status in adult male zebra finches (Taeniopygia guttata). Physiology and Behavior, 2001, 74, 533-541.	2.1	34
16	Independent Premotor Encoding of the Sequence and Structure of Birdsong in Avian Cortex. Journal of Neuroscience, 2014, 34, 16821-16834.	3.6	31
17	CB1 cannabinoid receptor activation inhibits a neural correlate of song recognition in an auditory/perceptual region of the zebra finch telencephalon. Journal of Neurobiology, 2003, 56, 266-274.	3.6	27
18	A statistical method for quantifying songbird phonology and syntax. Journal of Neuroscience Methods, 2008, 174, 147-154.	2.5	26

Frank Johnson

#	Article	IF	CITATIONS
19	Dual Pre-Motor Contribution to Songbird Syllable Variation. Journal of Neuroscience, 2011, 31, 322-330.	3.6	24
20	Neuronal Intrinsic Physiology Changes During Development of a Learned Behavior. ENeuro, 2017, 4, ENEURO.0297-17.2017.	1.9	23
21	Increased expression of endogenous biotin, but not BDNF, in telencephalic song regions during zebra finch vocal learning. Developmental Brain Research, 2000, 120, 113-123.	1.7	22
22	Food availability but not cold ambient temperature affects undirected singing in adult male zebra finches. Physiology and Behavior, 2002, 76, 9-20.	2.1	22
23	Two neural streams, one voice: Pathways for theme and variation in the songbird brain. Neuroscience, 2014, 277, 806-817.	2.3	21
24	Axial Organization of a Brain Region That Sequences a Learned Pattern of Behavior. Journal of Neuroscience, 2012, 32, 9312-9322.	3.6	19
25	Experience-Dependent Intrinsic Plasticity During Auditory Learning. Journal of Neuroscience, 2019, 39, 1206-1221.	3.6	19
26	Motor-induced transcription but sensory-regulated translation of ZENK in socially interactive songbirds. Journal of Neurobiology, 2005, 65, 251-259.	3.6	17
27	A computational tool for automated large-scale analysis and measurement of bird-song syntax. Journal of Neuroscience Methods, 2012, 210, 147-160.	2.5	13
28	Singing-driven gene expression in the developing songbird brain. Physiology and Behavior, 2005, 86, 390-398.	2.1	10
29	A distributed neural network model for the distinct roles of medial and lateral HVC in zebra finch song production. Journal of Neurophysiology, 2017, 118, 677-692.	1.8	10
30	Disconnection of a basal ganglia circuit in juvenile songbirds attenuates the spectral differentiation of song syllables. Developmental Neurobiology, 2014, 74, 574-590.	3.0	9
31	Reorganization of a telencephalic motor region during sexual differentiation and vocal learning in zebra finches. Developmental Brain Research, 2000, 121, 253-263.	1.7	8
32	Orthogonal topography in the parallel input architecture of songbird HVC. Journal of Comparative Neurology, 2017, 525, 2133-2151.	1.6	8
33	Inhibitors of carbohydrate metabolism reduce undirected song production at doses that do not alter food intake in singly housed male zebra finches. Behavioural Brain Research, 2005, 159, 51-54.	2.2	6
34	Interhemispheric dominance switching in a neural network model for birdsong. Journal of Neurophysiology, 2018, 120, 1186-1197.	1.8	3
35	Network dynamics underlie learning and performance of birdsong. Current Opinion in Neurobiology, 2020, 64, 119-126.	4.2	3