Theresa W Guilbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5713569/publications.pdf

Version: 2024-02-01

83 papers 6,953 citations

34 h-index 76769 74 g-index

85 all docs

85 docs citations

85 times ranked

5280 citing authors

#	Article	IF	CITATIONS
1	Effect of vitamin D supplementation on total and allergen-specific IgE in children with asthma and low vitamin D levels. Journal of Allergy and Clinical Immunology, 2022, 149, 440-444.e2.	1.5	13
2	Violence-related distress and lung function in two longitudinal studies of youth. European Respiratory Journal, 2022, 59, 2102329.	3.1	9
3	Treatment by biomarker-informed endotype vs guideline care in children with difficult-to-treat asthma. Annals of Allergy, Asthma and Immunology, 2022, 128, 535-543.e6.	0.5	2
4	Key Issues in Pediatric and Adult Severe Asthma: Staying Grounded as Biologics Take Us to New Heights. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 420-421.	2.0	0
5	Nasal DNA methylation differentiates severe from nonâ€severe asthma in Africanâ€American children. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1836-1845.	2.7	19
6	Preventing asthma in high risk kids (PARK) with omalizumab: Design, rationale, methods, lessons learned and adaptation. Contemporary Clinical Trials, 2021, 100, 106228.	0.8	24
7	129Xe MRI as a measure of clinical disease severity for pediatric asthma. Journal of Allergy and Clinical Immunology, 2021, 147, 2146-2153.e1.	1.5	18
8	Which Wheezing Preschoolers Should be Treated for Asthma?. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 2611-2618.	2.0	17
9	Feasibility and preliminary validity of mobile spirometry in pediatric asthma. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3821-3823.	2.0	7
10	Use of the composite asthma severity index in a pediatric subspecialty clinic. Annals of Allergy, Asthma and Immunology, 2021, 126, 702-706.	0.5	0
11	Vitamin D supplementation, lung function and asthma control in children with asthma and low vitamin D levels. European Respiratory Journal, 2021, 58, 2100989.	3.1	6
12	Evaluation of Risk Scores to Predict Pediatric Severe Asthma Exacerbations. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 4393-4401.e8.	2.0	8
13	Exciting Era of Sensor-Based Electronic Monitoring of Adherence in Pediatric Asthma. Pediatrics, 2021, 147, .	1.0	4
14	Bronchial Thermoplasty. Respiratory Medicine, 2021, , 477-485.	0.1	0
15	Structural lung abnormalities on computed tomography correlate with asthma inflammation in bronchoscopic alveolar lavage fluid. Journal of Asthma, 2020, 57, 968-979.	0.9	7
16	Systematic Review of Digital Interventions for Pediatric Asthma Management. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 1284-1293.	2.0	70
17	Telehealth delivery of adherence and medication management system improves outcomes in innerâ€city children with asthma. Pediatric Pulmonology, 2020, 55, 858-865.	1.0	37
18	Effect of Vitamin D ₃ Supplementation on Severe Asthma Exacerbations in Children With Asthma and Low Vitamin D Levels. JAMA - Journal of the American Medical Association, 2020, 324, 752.	3.8	99

#	Article	IF	Citations
19	Stepwise Pharmacological Approach to Severe Childhood Asthma. , 2020, , 113-131.		O
20	A Systematic Evaluation of Asthma Management Apps Examining Behavior Change Techniques. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 2583-2591.	2.0	67
21	Personalized Medicine and Pediatric Asthma. Immunology and Allergy Clinics of North America, 2019, 39, 221-231.	0.7	3
22	New Directions in Pediatric Asthma. Immunology and Allergy Clinics of North America, 2019, 39, 283-295.	0.7	7
23	Preschool Wheezing Phenotypes Exhibit Heterogeneity in Disease Expression and Prognosis. Annals of the American Thoracic Society, 2019, 16, 820-822.	1.5	2
24	Key Issues in Pediatric Asthma. Immunology and Allergy Clinics of North America, 2019, 39, xv-xvi.	0.7	0
25	Examination of the uses, needs, and preferences for health technology use in adolescents with asthma. Journal of Asthma, 2019, 56, 964-972.	0.9	21
26	Phenotypes of Recurrent Wheezing in Preschool Children: Identification by Latent Class Analysis and Utility in Prediction of Future Exacerbation. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 915-924.e7.	2.0	47
27	Eosinophilic Esophagitis: an Important Comorbid Condition of Asthma?. Clinical Reviews in Allergy and Immunology, 2018, 55, 56-64.	2.9	16
28	Overweight/obesity status in preschool children associates with worse asthma but robust improvement on inhaled corticosteroids. Journal of Allergy and Clinical Immunology, 2018, 141, 1459-1467.e2.	1.5	15
29	Management of Severe Asthma in Children. Current Treatment Options in Pediatrics, 2018, 4, 438-455.	0.2	o
30	Matched cohort study of therapeutic strategies to prevent preschool wheezing/asthma attacks. Journal of Asthma and Allergy, 2018, Volume 11, 309-321.	1.5	11
31	The Tempest: Difficult to Control Asthma in Adolescence. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 738-748.	2.0	9
32	Real-Life Outcomes for Patients with Asthma Prescribed Spacers for Use with Either Extrafine- or Fine-Particle Inhaled Corticosteroids. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 1040-1049.e4.	2.0	13
33	Severe Asthma in Children. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 889-898.	2.0	87
34	Moving towards precision care for childhood asthma. Current Opinion in Pediatrics, 2016, 28, 331-338.	1.0	12
35	Cost-Effectiveness of Asthma Step-Up Therapy as an Increased Dose of Extrafine-Particle Inhaled Corticosteroid or Add-On Long-Acting Beta2-Agonist. Pulmonary Therapy, 2016, 2, 73-89.	1.1	1
36	Reply. Journal of Allergy and Clinical Immunology: in Practice, 2016, 4, 372-373.	2.0	0

3

#	Article	lF	CITATIONS
37	Add-on LABA in a separate inhaler as asthma step-up therapy <i>versus</i> increased dose of ICS or ICS/LABA combination inhaler. ERJ Open Research, 2016, 2, 00106-2015.	1.1	11
38	Should a Preschool Child with Acute Episodic Wheeze be Treated with Oral Corticosteroids? AÂPro/Con Debate. Journal of Allergy and Clinical Immunology: in Practice, 2016, 4, 27-35.	2.0	19
39	Early Administration of Azithromycin and Prevention of Severe Lower Respiratory Tract Illnesses in Preschool Children With a History of Such Illnesses. JAMA - Journal of the American Medical Association, 2015, 314, 2034.	3.8	224
40	Sparse modeling of spatial environmental variables associated with asthma. Journal of Biomedical Informatics, 2015, 53, 320-329.	2.5	14
41	Heterogeneity in Asthma Care in a Statewide Collaborative: the Ohio Pediatric Asthma Repository. Pediatrics, 2015, 135, 271-279.	1.0	32
42	Small-particle Inhaled Corticosteroid as First-line or Step-up Controller Therapy in Childhood Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2015, 3, 721-731.e16.	2.0	38
43	Markers of Differential Response to Inhaled Corticosteroid Treatment Among Children with Mild Persistent Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2015, 3, 540-546.e3.	2.0	25
44	Early treatment in preschool children. Current Opinion in Allergy and Clinical Immunology, 2015, 15, 175-183.	1.1	2
45	Maternal pregnancy weight gain and cord blood iron status are associated with eosinophilia in infancy. Journal of Perinatology, 2015, 35, 621-626.	0.9	17
46	Update in Pediatric Lung Disease 2014. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 918-923.	2.5	2
47	Predictors of asthma control and lung function responsiveness to step 3 therapy in children withÂuncontrolled asthma. Journal of Allergy and Clinical Immunology, 2014, 133, 350-356.	1.5	40
48	Childhood Asthma-Predictive Phenotype. Journal of Allergy and Clinical Immunology: in Practice, 2014, 2, 664-670.	2.0	63
49	Severe Asthma in Children. Journal of Allergy and Clinical Immunology: in Practice, 2014, 2, 489-500.	2.0	140
50	Neonatal iron status is impaired by maternal obesity and excessive weight gain during pregnancy. Journal of Perinatology, 2014, 34, 513-518.	0.9	62
51	Cost-effectiveness of initiating extrafine- or standard size-particle inhaled corticosteroid for asthma in two health-care systems: a retrospective matched cohort study. Npj Primary Care Respiratory Medicine, 2014, 24, 14081.	1.1	21
52	Estimating Wisconsin Asthma Prevalence Using Clinical Electronic Health Records and Public Health Data. American Journal of Public Health, 2014, 104, e65-e73.	1.5	25
53	Management of Asthma in Infants and Children. , 2014, , 876-891.		2
54	Diagnosis of Asthma in Infants and Children. , 2014, , 861-875.		2

#	Article	IF	CITATIONS
55	Evaluation of the Modified Asthma Predictive Index in High-Risk Preschool Children. Journal of Allergy and Clinical Immunology: in Practice, 2013, 1, 152-156.	2.0	113
56	Pediatric asthma phenotypes. Current Opinion in Pediatrics, 2012, 24, 344-351.	1.0	37
57	Does Breastfeeding Impact Lung Function and Asthma Risk?. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 801-802.	2.5	6
58	Diagnosis and management of early asthma in preschool-aged children. Journal of Allergy and Clinical Immunology, 2012, 130, 287-296.	1.5	93
59	International consensus on (ICON) pediatric asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 976-997.	2.7	327
60	The theory and application of UW ehealth-PHINEX, a clinical electronic health record-public health information exchange. Wisconsin Medical Journal, 2012, 111, 124-33.	0.3	18
61	Growth of preschool children at high risk for asthma 2 years after discontinuation of fluticasone. Journal of Allergy and Clinical Immunology, 2011, 128, 956-963.e7.	1.5	76
62	Decreased lung function after preschool wheezing rhinovirus illnesses in children at risk to develop asthma. Journal of Allergy and Clinical Immunology, 2011, 128, 532-538.e10.	1.5	111
63	Daily or Intermittent Budesonide in Preschool Children with Recurrent Wheezing. New England Journal of Medicine, 2011, 365, 1990-2001.	13.9	194
64	Use of beclomethasone dipropionate as rescue treatment for children with mild persistent asthma (TREXA): a randomised, double-blind, placebo-controlled trial. Lancet, The, 2011, 377, 650-657.	6.3	295
65	Controversies in the Treatment of the Acutely Wheezing Infant. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1284-1285.	2.5	11
66	Asthma That Is Not Well-Controlled Is Associated with Increased Healthcare Utilization and Decreased Quality of Life. Journal of Asthma, 2011, 48, 126-132.	0.9	115
67	Relationship between infant weight gain and later asthma. Pediatric Allergy and Immunology, 2010, 21, 82-89.	1.1	38
68	Role of infection in the development and exacerbation of asthma. Expert Review of Respiratory Medicine, 2010, 4, 71-83.	1.0	73
69	Identifying and managing the infant and toddler at risk for asthma. Journal of Allergy and Clinical Immunology, 2010, 126, 417-422.	1.5	19
70	Step-up Therapy for Children with Uncontrolled Asthma Receiving Inhaled Corticosteroids. New England Journal of Medicine, 2010, 362, 975-985.	13.9	406
71	Infections and Asthma. , 2010, , 363-376.		1
72	Impulse oscillometry versus spirometry in a long-term study of controller therapy for pediatric asthma. Journal of Allergy and Clinical Immunology, 2009, 123, 861-867.e1.	1.5	92

#	Article	IF	CITATIONS
73	Patient characteristics associated with improved outcomes with use of an inhaled corticosteroid in preschool children at risk for asthma. Journal of Allergy and Clinical Immunology, 2009, 123, 1077-1082.e5.	1.5	82
74	Effect of Breastfeeding on Lung Function in Childhood and Modulation by Maternal Asthma and Atopy. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 843-848.	2.5	82
75	Prevention of asthma in childhood. Current Opinion in Allergy and Clinical Immunology, 2007, 7, 174-179.	1.1	9
76	Long-term comparison of 3 controller regimens for mild-moderate persistent childhood asthma: The Pediatric Asthma Controller Trial. Journal of Allergy and Clinical Immunology, 2007, 119, 64-72.	1.5	275
77	Response profiles to fluticasone and montelukast in mild-to-moderate persistent childhood asthma. Journal of Allergy and Clinical Immunology, 2006, 117, 45-52.	1.5	236
78	Long-Term Inhaled Corticosteroids in Preschool Children at High Risk for Asthma. New England Journal of Medicine, 2006, 354, 1985-1997.	13.9	931
79	Outcome of Asthma and Wheezing in the First 6 Years of Life. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 1253-1258.	2.5	600
80	Characterization of within-subject responses to fluticasone and montelukast in childhood asthma. Journal of Allergy and Clinical Immunology, 2005, 115, 233-242.	1.5	545
81	The Prevention of Early Asthma in Kids study: design, rationale and methods for the Childhood Asthma Research and Education network. Contemporary Clinical Trials, 2004, 25, 286-310.	2.0	160
82	Atopic characteristics of children with recurrent wheezing at high risk for the development of childhood asthma. Journal of Allergy and Clinical Immunology, 2004, 114, 1282-1287.	1.5	346
83	The Burden of Asthma in the United States. American Journal of Respiratory and Critical Care Medicine, 2002, 166, 1044-1049.	2.5	265