Mahmood Sharifitabar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/571347/publications.pdf

Version: 2024-02-01

21 papers

392 citations

11 h-index 19 g-index

21 all docs

21 docs citations

21 times ranked 255 citing authors

#	Article	IF	CITATIONS
1	Preparation of composite powders containing TiB2 and ZrB2 particles through combustion synthesis of TiO2–ZrO2–B2O3–Mg system. Ceramics International, 2021, 47, 3911-3919.	2.3	2
2	Synthesis and kinetic study of Mo(Si,Al)2 coatings on the surface of molybdenum through hot dipping into a commercial Al-12Âwt.%Si alloy melt. Surfaces and Interfaces, 2021, 24, 101044.	1.5	4
3	Effects of heat treatment on microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process. Transactions of Nonferrous Metals Society of China, 2020, 30, 3016-3030.	1.7	47
4	On the formation of Al2O3 nanofibers during self-propagating high-temperature synthesis of TiO2–Al–C system in various environments. Ceramics International, 2020, 46, 17053-17061.	2.3	4
5	Synthesis of porous Mg-doped CeO2 powders via self-propagating high-temperature synthesis route. Advanced Powder Technology, 2019, 30, 2947-2956.	2.0	7
6	Self-propagating high-temperature synthesis of (Zr,W)C/WC/Al2O3 composite powders from WO3-ZrO2-Al-C system. International Journal of Refractory Metals and Hard Materials, 2019, 82, 279-286.	1.7	5
7	Microstructure and wear properties of Fe–TiC composite coatings produced by submerged arc cladding process using ferroalloy powder mixtures. Surface and Coatings Technology, 2019, 361, 91-101.	2.2	18
8	Synthesis of Ti–Si–Al coatings on the surface of Ti–6Al–4V alloy via hot dip siliconizing route. Surface and Coatings Technology, 2018, 337, 349-356.	2.2	28
9	Fast synthesis of MgAl2O4â€'W and MgAl2O4â€'Wâ€'W2B composite powders by self-propagating high-temperature synthesis reactions. Ceramics International, 2018, 44, 6508-6513.	2.3	17
10	Effects of Ti addition on the microstructure and mechanical properties of multi-pass E6010 high-cellulosic electrode weld metal. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	3
11	Effect of extra carbon addition on the self-propagation high-temperature synthesis characteristics of WO3-H3BO3-Mg-C system. Ceramics International, 2018, 44, 20115-20121.	2.3	9
12	On the self-propagating high-temperature synthesis of tungsten boride containing composite powders from WO3–B2O3–Mg system. Ceramics International, 2018, 44, 14355-14362.	2.3	11
13	WC‒TiC‒Al2O3 composite powder preparation by self-propagating high-temperature synthesis route. Ceramics International, 2017, 43, 15685-15693.	2.3	19
14	Formation mechanism of TiC–Al2O3–Fe3Al composites during self-propagating high-temperature synthesis of TiO2–Al–C–Fe system. Ceramics International, 2016, 42, 12361-12370.	2.3	18
15	Microstructure and wear resistance of in-situ TiC–Al2O3 particles reinforced Fe-based coatings produced by gas tungsten arc cladding. Surface and Coatings Technology, 2016, 285, 47-56.	2.2	39
16	Fabrication of Fe–TiC–Al2O3 composites on the surface of steel using a TiO2–Al–C–Fe combustion reaction induced by gas tungsten arc cladding. International Journal of Minerals, Metallurgy and Materials, 2016, 23, 193-204.	2.4	7
17	Effects of Fe additions on self propagating high temperature synthesis characteristics of TiO2–Al–C system. International Journal of Refractory Metals and Hard Materials, 2014, 47, 93-101.	1.7	34
18	Synthesis of Ti(C, N) ceramic layer on surface of Ti–6Al–4V alloy via pack nitro-carburizing route. Surface and Coatings Technology, 2013, 219, 94-100.	2.2	23

#	Article	IF	CITATIONS
19	Gas tungsten arc welding of CP-copper to 304 stainless steel using different filler materials. Transactions of Nonferrous Metals Society of China, 2012, 22, 2937-2942.	1.7	68
20	Resistance upset butt welding of austenitic to martensitic stainless steels. Materials & Design, 2010, 31, 3044-3050.	5.1	27
21	Characterization of 1050Al/Al ₃ Ni/ZrO ₂ hybrid surface composites fabricated by friction stir processing. International Journal of Applied Ceramic Technology, 0, , .	1.1	2