
Andreas Bringmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/571338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Müller cells and astrocytes in tractional macular disorders. Progress in Retinal and Eye Research, 2022, 86, 100977.	7.3	29
2	Primate fovea. , 2022, , 83-117.		1
3	Introduction: Optical properties of the retina. , 2022, , 1-34.		0
4	Retinal glia. , 2022, , 51-66.		0
5	Development of the fovea. , 2022, , 123-138.		0
6	Tractional disorders of the human fovea. , 2022, , 139-185.		0
7	Age- and sex-related variations of individual retinal layer thickness in the foveal center of healthy eyes. Experimental Eye Research, 2022, 219, 109038.	1.2	0
8	Morphology of foveal hypoplasia: Hyporeflective zones in the Henle fiber layer of eyes with high-grade foveal hypoplasia. PLoS ONE, 2022, 17, e0266968.	1.1	2
9	Kir4.2 Potassium Channels in Retinal Pigment Epithelial Cells In Vitro: Contribution to Cell Viability and Proliferation, and Down-Regulation by Vascular Endothelial Growth Factor. Biomolecules, 2022, 12, 848.	1.8	0
10	Different modes of full-thickness macular hole formation. Experimental Eye Research, 2021, 202, 108393.	1.2	23
11	Degenerative lamellar macular holes: tractional development and morphological alterations. International Ophthalmology, 2021, 41, 1203-1221.	0.6	14
12	Foveal regeneration after resolution of cystoid macular edema without and with internal limiting membrane detachment: presumed role of glial cells for foveal structure stabilization. International Journal of Ophthalmology, 2021, 14, 818-833.	0.5	4
13	Foveal configurations with disappearance of the foveal pit in eyes with macular pucker: Presumed role of MÅ1⁄4ller cells in the formation of foveal herniation. Experimental Eye Research, 2021, 207, 108604.	1.2	10
14	Hypoxic and osmotic expression of Kir2.1 potassium channels in retinal pigment epithelial cells: Contribution to vascular endothelial growth factor expression. Experimental Eye Research, 2021, 211, 108741.	1.2	2
15	Spontaneous closure of small fullâ€ŧhickness macular holes: Presumed role of Müller cells. Acta Ophthalmologica, 2020, 98, e447-e456.	0.6	43
16	Glia of the human retina. Glia, 2020, 68, 768-796.	2.5	173
17	Morphology of partial-thickness macular defects: presumed roles of Müller cells and tissue layer interfaces of low mechanical stability. International Journal of Retina and Vitreous, 2020, 6, 28.	0.9	28
18	Two different populations of Müller cells stabilize the structure of the fovea: an optical coherence tomography study. International Ophthalmology, 2020, 40, 2931-2948.	0.6	32

#	Article	IF	CITATIONS
19	Different modes of foveal regeneration after closure of full-thickness macular holes by (re)vitrectomy and autologous platelet concentrate. International Journal of Ophthalmology, 2020, 13, 36-48.	0.5	19
20	Osmotic and hypoxic induction of osteopontin in retinal pigment epithelial cells: Involvement of purinergic receptor signaling. Molecular Vision, 2020, 26, 188-203.	1.1	5
21	Osmotic regulation of aquaporin-8 expression in retinal pigment epithelial cells in vitro: Dependence on K channel activation. Molecular Vision, 2020, 26, 797-817.	1.1	1
22	Cone-to-Müller cell ratio in the mammalian retina: A survey of seven mammals with different lifestyle. Experimental Eye Research, 2019, 181, 38-48.	1.2	17
23	Structure and function of the bird fovea. Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 2019, 48, 177-200.	0.3	41
24	Osmotic induction of cyclooxygenase-2 in RPE cells: Stimulation of inflammasome activation. Molecular Vision, 2019, 25, 329-344.	1.1	5
25	Müller glial cells of the primate foveola: An electron microscopical study. Experimental Eye Research, 2018, 167, 110-117.	1.2	63
26	The primate fovea: Structure, function and development. Progress in Retinal and Eye Research, 2018, 66, 49-84.	7.3	221
27	Hypoxic expression of NLRP3 and VEGF in cultured retinal pigment epithelial cells: contribution of P2Y2 receptor signaling. Purinergic Signalling, 2018, 14, 471-484.	1.1	19
28	Retinal adaptation to dim light vision in spectacled caimans (Caiman crocodilus fuscus): Analysis of retinal ultrastructure. Experimental Eye Research, 2018, 173, 160-178.	1.2	15
29	In vitro drusen model: three-dimensional spheroid culture of retinal pigment epithelial cells. Journal of Cell Science, 2018, 132, .	1.2	13
30	Müller glial cells contribute to dim light vision in the spectacled caiman (Caiman crocodilus fuscus) Tj ETQq0	0 0 ₁ rgBT /C)verlock 10 Tr
31	Osmotic and hypoxic induction of the complement factor C9 in cultured human retinal pigment epithelial cells: Regulation of VEGF and NLRP3 expression. Molecular Vision, 2018, 24, 518-535.	1.1	14
32	Activator protein-1 contributes to the NaCl-induced expression of VEGF and PIGF in RPE cells. Molecular Vision, 2018, 24, 647-666.	1.1	5
33	The Retina of Asian and African Elephants: Comparison of Newborn and Adult. Brain, Behavior and Evolution, 2017, 89, 84-103.	0.9	7
34	Expression and signaling of NGF in the healthy and injured retina. Cytokine and Growth Factor Reviews, 2017, 34, 43-57.	3.2	48
35	<scp>T</scp> wo different mechanosensitive calcium responses in Müller glial cells of the guinea pig retina: <scp>D</scp> ifferential dependence on purinergic receptor signaling. Glia, 2017, 65, 62-74.	2.5	19
36	Osmotic regulation of expression in RPE cells: The involvement of purinergic receptor signaling. Molecular Vision, 2017, 23, 116-130.	1.1	8

#	Article	IF	CITATIONS
37	P2Y1 Receptor Signaling Contributes to High Salt-Induced Priming of the NLRP3 Inflammasome in Retinal Pigment Epithelial Cells. PLoS ONE, 2016, 11, e0165653.	1.1	34
38	Osmotic induction of placental growth factor in retinal pigment epithelial cells in vitro: contribution of NFAT5 activity. Molecular Biology Reports, 2016, 43, 803-814.	1.0	9
39	Impaired Purinergic Regulation of the Glial (Müller) Cell Volume in the Retina of Transgenic Rats Expressing Defective Polycystin-2. Neurochemical Research, 2016, 41, 1784-1796.	1.6	10
40	Osmotic expression of aldose reductase in retinal pigment epithelial cells: involvement of NFAT5. Graefe's Archive for Clinical and Experimental Ophthalmology, 2016, 254, 2387-2400.	1.0	10
41	Role of Purines in Müller Glia. Journal of Ocular Pharmacology and Therapeutics, 2016, 32, 518-533.	0.6	21
42	The ultrastructure of rabbit sclera after scleral crosslinking with riboflavin and blue light of different intensities. Graefe's Archive for Clinical and Experimental Ophthalmology, 2016, 254, 1567-1577.	1.0	14
43	Endothelins Inhibit Osmotic Swelling of Rat Retinal Glial and Bipolar Cells by Activation of Growth Factor Signaling. Neurochemical Research, 2016, 41, 2598-2606.	1.6	5
44	Purinergic signaling in retinal degeneration and regeneration. Neuropharmacology, 2016, 104, 194-211.	2.0	67
45	Ischemic regulation of brain-derived neurotrophic factor-mediated cell volume and TrkB expression in glial (MÃ1⁄4ller) and bipolar cells of the rat retina. Graefe's Archive for Clinical and Experimental Ophthalmology, 2016, 254, 497-503.	1.0	3
46	Sigma-1 receptor activation inhibits osmotic swelling of rat retinal glial (Müller) cells by transactivation of glutamatergic and purinergic receptors. Neuroscience Letters, 2016, 610, 13-18.	1.0	15
47	Osmotic Induction of Angiogenic Growth Factor Expression in Human Retinal Pigment Epithelial Cells. PLoS ONE, 2016, 11, e0147312.	1.1	30
48	Intake of dietary salt and drinking water: Implications for the development of age-related macular degeneration. Molecular Vision, 2016, 22, 1437-1454.	1.1	12
49	Nonvesicular Release of ATP from Rat Retinal Glial (Müller) Cells is Differentially Mediated in Response to Osmotic Stress and Glutamate. Neurochemical Research, 2015, 40, 651-660.	1.6	30
50	Retinal Glia. Colloquium Series on Neuroglia in Biology and Medicine From Physiology To Disease, 2015, 2, 1-644.	0.5	5
51	Regulation of the hyperosmotic induction of aquaporin 5 and VEGF in retinal pigment epithelial cells: involvement of NFAT5. Molecular Vision, 2015, 21, 360-77.	1.1	33
52	Gene expression regulation in retinal pigment epithelial cells induced by viral RNA and viral/bacterial DNA. Molecular Vision, 2015, 21, 1000-16.	1.1	9
53	Thrombospondin-1 Is Produced by Retinal Glial Cells and Inhibits the Growth of Vascular Endothelial Cells. Ophthalmic Research, 2014, 52, 81-88.	1.0	19
54	Nerve growth factor inhibits osmotic swelling of rat retinal glial (Müller) and bipolar cells by inducing glial cytokine release. Journal of Neurochemistry, 2014, 131, 303-313.	2.1	31

#	Article	IF	CITATIONS
55	Effects of arteriolar constriction on retinal gene expression and Müller cell responses in a rat model of branch retinal vein occlusion. Graefe's Archive for Clinical and Experimental Ophthalmology, 2014, 252, 257-265.	1.0	16
56	Effects of the vegetable polyphenols epigallocatechin-3-gallate, luteolin, apigenin, myricetin, quercetin, and cyanidin in primary cultures of human retinal pigment epithelial cells. Molecular Vision, 2014, 20, 242-58.	1.1	47
57	New functions of MÃ1⁄4ller cells. Glia, 2013, 61, 651-678.	2.5	564
58	Cell Biology of the Müller Cell. , 2013, , 415-432.		0
59	Biomechanical properties of retinal glial cells: Comparative and developmental data. Experimental Eye Research, 2013, 113, 60-65.	1.2	21
60	Hypoosmotic and glutamateâ€induced swelling of bipolar cells in the rat retina: comparison with swelling of <scp>M</scp> üller glial cells. Journal of Neurochemistry, 2013, 126, 372-381.	2.1	22
61	GABA and Glutamate Uptake and Metabolism in Retinal Glial (Müller) Cells. Frontiers in Endocrinology, 2013, 4, 48.	1.5	130
62	Disruption of Endogenous Purinergic Signaling Inhibits Vascular Endothelial Growth Factor- and Glutamate-Induced Osmotic Volume Regulation of Müller Glial Cells in Knockout Mice. Ophthalmic Research, 2013, 50, 209-214.	1.0	8
63	Müller Cell Reactivity in Response to Photoreceptor Degeneration in Rats with Defective Polycystin-2. PLoS ONE, 2013, 8, e61631.	1.1	22
64	Basic Fibroblast Growth Factor Contributes to a Shift in the Angioregulatory Activity of Retinal Glial (Müller) Cells. PLoS ONE, 2013, 8, e68773.	1.1	27
65	Müller Glial Cells in Retinal Disease. Ophthalmologica, 2012, 227, 1-19.	1.0	325
66	Transcriptional Regulation of Aquaporins in the Ischemic Rat Retina: Upregulation of Aquaporin-9. Current Eye Research, 2012, 37, 524-531.	0.7	25
67	Physiologic Properties of Müller Cells from Human Eyes Affected with Uveal Melanoma. , 2012, 53, 4170.		12
68	Effect of Intravitreal Anti-Vascular Endothelial Growth Factor Treatment on the Retinal Gene Expression in Acute Experimental Central Retinal Vein Occlusion. Ophthalmic Research, 2012, 47, 157-162.	1.0	14
69	Activated Blood Coagulation Factor X (FXa) Induces Angiogenic Growth Factor Expression in Human Retinal Pigment Epithelial Cells. , 2012, 53, 5930.		17
70	Transcriptional regulation of aquaporin-3 in human retinal pigment epithelial cells. Molecular Biology Reports, 2012, 39, 7949-7956.	1.0	14
71	Mechanisms of VEGF- and Glutamate-Induced Inhibition of Osmotic Swelling of Murine Retinal Glial (Müller) Cells: Indications for the Involvement of Vesicular Glutamate Release and Connexin-Mediated ATP Release. Neurochemical Research, 2012, 37, 268-278.	1.6	29
72	Expression of Aquaporins in the Retina of Diabetic Rats. Current Eye Research, 2011, 36, 850-856.	0.7	37

#	Article	IF	CITATIONS
73	Involvement of oxidative stress and mitochondrial dysfunction in the osmotic swelling of retinal glial cells from diabetic rats. Experimental Eye Research, 2011, 92, 87-93.	1.2	36
74	Immunolocalization of aquaporin-6 in the rat retina. Neuroscience Letters, 2011, 490, 130-134.	1.0	23
75	Effects of Ischemia–Reperfusion on Physiological Properties of Müller Glial Cells in the Porcine Retina. , 2011, 52, 3360.		45
76	Purinergic signaling involved in Müller cell function in the mammalian retina. Progress in Retinal and Eye Research, 2011, 30, 324-342.	7.3	71
77	Effects of intravitreal triamcinolone acetonide on retinal gene expression in a rat model of central retinal vein occlusion. Graefe's Archive for Clinical and Experimental Ophthalmology, 2011, 249, 1175-1183.	1.0	20
78	Effects of intravitreal bevacizumab (Avastin) on the porcine retina. Graefe's Archive for Clinical and Experimental Ophthalmology, 2011, 249, 1821-1829.	1.0	13
79	Downâ€regulation of Kir4.1 in the cerebral cortex of rats with liver failure and in cultured astrocytes treated with glutamine: Implications for astrocytic dysfunction in hepatic encephalopathy. Journal of Neuroscience Research, 2011, 89, 2018-2027.	1.3	22
80	Synergistic action of hypoosmolarity and glutamine in inducing acute swelling of retinal glial (Müller) cells. Glia, 2011, 59, 256-266.	2.5	16
81	Reactive glial cells: increased stiffness correlates with increased intermediate filament expression. FASEB Journal, 2011, 25, 624-631.	0.2	148
82	Purinergic Signaling Involved in the Volume Regulation of Glial Cells in the Rat Retina: Alteration in Experimental Diabetes. , 2011, , 319-340.		0
83	The human Müller cell line MIO-M1 expresses opsins. Molecular Vision, 2011, 17, 2738-50.	1.1	38
84	Sex Steroids Inhibit Osmotic Swelling of Retinal Glial Cells. Neurochemical Research, 2010, 35, 522-530.	1.6	27
85	Serum albumin induces osmotic swelling of rat retinal glial cells. Brain Research, 2010, 1317, 268-276.	1.1	8
86	Deletion of aquaporinâ€4 renders retinal glial cells more susceptible to osmotic stress. Journal of Neuroscience Research, 2010, 88, 2877-2888.	1.3	59
87	Endogenous purinergic signaling is required for osmotic volume regulation of retinal glial cells. Journal of Neurochemistry, 2010, 112, 1261-1272.	2.1	49
88	Chemotactic and Cytotoxic Effects of Minocycline on Human Retinal Pigment Epithelial Cells. , 2010, 51, 2721.		18
89	Müller Cells in the Healthy Retina. , 2010, , 35-214.		9
90	Retinal Gene Expression and MuÌ´ller Cell Responses after Branch Retinal Vein Occlusion in the Rat. , 2009, 50, 2359.		90

#	Article	IF	CITATIONS
91	Cellular signaling and factors involved in Müller cell gliosis: Neuroprotective and detrimental effects. Progress in Retinal and Eye Research, 2009, 28, 423-451.	7.3	607
92	Expression and function of P2Y receptors on Müller cells of the postnatal rat retina. Glia, 2009, 57, 1680-1690.	2.5	40
93	Involvement of Müller glial cells in epiretinal membrane formation. Graefe's Archive for Clinical and Experimental Ophthalmology, 2009, 247, 865-883.	1.0	160
94	Light stimulation evokes two different calcium responses in Müller glial cells of the guinea pig retina. European Journal of Neuroscience, 2009, 29, 1165-1176.	1.2	34
95	Purinergic signaling in special senses. Trends in Neurosciences, 2009, 32, 128-141.	4.2	174
96	Role of retinal glial cells in neurotransmitter uptake and metabolism. Neurochemistry International, 2009, 54, 143-160.	1.9	226
97	Calcium responses mediated by type 2 IP3-receptors are required for osmotic volume regulation of retinal glial cells in mice. Neuroscience Letters, 2009, 457, 85-88.	1.0	17
98	Involvement of A(1) adenosine receptors in osmotic volume regulation of retinal glial cells in mice. Molecular Vision, 2009, 15, 1858-67.	1.1	21
99	Glial cellâ€derived glutamate mediates autocrine cell volume regulation in the retina: activation by VEGF. Journal of Neurochemistry, 2008, 104, 386-399.	2.1	49
100	Osmotic swelling characteristics of glial cells in the murine hippocampus, cerebellum, and retina in situ. Journal of Neurochemistry, 2008, 105, 1405-1417.	2.1	48
101	Müller cell gliosis in retinal organ culture mimics gliotic alterations after ischemia <i>in vivo</i> . International Journal of Developmental Neuroscience, 2008, 26, 745-751.	0.7	21
102	Localization of glial aquaporin-4 and Kir4.1 in the light-injured murine retina. Neuroscience Letters, 2008, 434, 317-321.	1.0	32
103	Proliferative gliosis causes mislocation and inactivation of inwardly rectifying K+ (Kir) channels in rabbit retinal glial cells. Experimental Eye Research, 2008, 86, 305-313.	1.2	25
104	Purinergic receptor activation inhibits osmotic glial cell swelling in the diabetic rat retina. Experimental Eye Research, 2008, 87, 385-393.	1.2	43
105	Mul`Îler Cell Response to Blue Light Injury of the Rat Retina. , 2008, 49, 3559.		72
106	Early Activation of Inflammation- and Immune Response-Related Genes after Experimental Detachment of the Porcine Retina. , 2008, 49, 1262.		56
107	Expression of CXCL8, CXCR1, and CXCR2 in Neurons and Glial Cells of the Human and Rabbit Retina. , 2008, 49, 4578.		53
108	Porcine Müller Glial Cells Increase Expression of BKCaChannels in Retinal Detachment. Current Eye Research, 2007, 32, 143-151.	0.7	9

#	Article	IF	CITATIONS
109	Diabetes alters the localization of glial aquaporins in rat retina. Neuroscience Letters, 2007, 421, 132-136.	1.0	58
110	Localization of aquaporin-0 immunoreactivity in the rat retina. Neuroscience Letters, 2007, 426, 81-86.	1.0	29
111	Ectonucleotidases in Müller glial cells of the rodent retina: Involvement in inhibition of osmotic cell swelling. Purinergic Signalling, 2007, 3, 423-433.	1.1	43
112	Müller cells as players in retinal degeneration and edema. Graefe's Archive for Clinical and Experimental Ophthalmology, 2007, 245, 627-636.	1.0	232
113	Changes in Membrane Conductance Play a Pathogenic Role in Osmotic Glial Cell Swelling in Detached Retinas. American Journal of Pathology, 2006, 169, 1990-1998.	1.9	40
114	Atypical gliosis in Müller cells of the slowly degenerating rds mutant mouse retina. Experimental Eye Research, 2006, 82, 449-457.	1.2	50
115	Atrial natriuretic peptide inhibits osmotical glial cell swelling in the ischemic rat retina: Dependence on glutamatergic-purinergic signaling. Experimental Eye Research, 2006, 83, 962-971.	1.2	20
116	Signaling pathways involved in PDGF-evoked cellular responses in human RPE cells. Biochemical and Biophysical Research Communications, 2006, 344, 912-919.	1.0	38
117	HB-EGF: Increase in the ischemic rat retina and inhibition of osmotic glial cell swelling. Biochemical and Biophysical Research Communications, 2006, 347, 310-318.	1.0	25
118	Differential regulation of Kir4.1 and Kir2.1 expression in the ischemic rat retina. Neuroscience Letters, 2006, 396, 97-101.	1.0	48
119	Expression of aquaporin-9 immunoreactivity by catecholaminergic amacrine cells in the rat retina. Neuroscience Letters, 2006, 398, 264-267.	1.0	30
120	Ischemia-reperfusion alters the immunolocalization of glial aquaporins in rat retina. Neuroscience Letters, 2006, 408, 108-112.	1.0	53
121	Müller cells in the healthy and diseased retina. Progress in Retinal and Eye Research, 2006, 25, 397-424.	7.3	1,500
122	The developmental expression of K+ channels in retinal glial cells is associated with a decrease of osmotic cell swelling. Glia, 2006, 54, 411-423.	2.5	49
123	Glutamate release by neurons evokes a purinergic inhibitory mechanism of osmotic glial cell swelling in the rat retina: Activation by neuropeptide Y. Journal of Neuroscience Research, 2006, 83, 538-550.	1.3	93
124	Diabetes Alters Osmotic Swelling Characteristics and Membrane Conductance of Glial Cells in Rat Retina. Diabetes, 2006, 55, 633-639.	0.3	184
125	Glial Cell Reactivity in a Porcine Model of Retinal Detachment. , 2006, 47, 2161.		124
126	Diversity of aquaporin mRNA expressed by rat and human retinas. NeuroReport, 2005, 16, 53-56.	0.6	53

#	Article	IF	CITATIONS
127	Neuronal versus glial cell swelling in the ischaemic retina. Acta Ophthalmologica, 2005, 83, 528-538.	0.4	105
128	Ocular inflammation alters swelling and membrane characteristics of rat Müller glial cells. Journal of Neuroimmunology, 2005, 161, 145-154.	1.1	74
129	Altered membrane physiology in Müller glial cells after transient ischemia of the rat retina. Glia, 2005, 50, 1-11.	2.5	54
130	Effect of α2-macroglobulin on retinal glial cell proliferation. Graefe's Archive for Clinical and Experimental Ophthalmology, 2005, 243, 811-816.	1.0	7
131	ADPβS evokes microglia activation in the rabbit retina in vivo. Purinergic Signalling, 2005, 1, 383-387.	1.1	13
132	Ischemia-Reperfusion Causes Exudative Detachment of the Rabbit Retina. , 2005, 46, 2592.		29
133	Triamcinolone Does Not Alter Glial Cell Activation in the Experimentally Detached Rabbit Retina. Journal of Ocular Pharmacology and Therapeutics, 2005, 21, 266-274.	0.6	4
134	The Glucocorticoid Triamcinolone Acetonide Inhibits Osmotic Swelling of Retinal Glial Cells via Stimulation of Endogenous Adenosine Signaling. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 1036-1045.	1.3	78
135	Endothelin receptors in the detached retina of the pig. Neuroscience Letters, 2005, 384, 72-75.	1.0	18
136	Expression of aquaporin-1 immunoreactivity by photoreceptor cells in the mouse retina. Neuroscience Letters, 2005, 388, 96-99.	1.0	62
137	Glial cell-mediated spread of retinal degeneration during detachment: A hypothesis based upon studies in rabbits. Vision Research, 2005, 45, 2256-2267.	0.7	48
138	Physiological properties of retinal Müller glial cells from the cynomolgus monkey, Macaca fascicularis—a comparison to human Müller cells. Vision Research, 2005, 45, 1781-1791.	0.7	14
139	Changes in retinal gene expression in proliferative vitreoretinopathy: glial cell expression of HB-EGF. Molecular Vision, 2005, 11, 397-413.	1.1	33
140	Pathomechanisms of Cystoid Macular Edema. Ophthalmic Research, 2004, 36, 241-249.	1.0	250
141	Glutamate-Evoked Alterations of Glial and Neuronal Cell Morphology in the Guinea Pig Retina. Journal of Neuroscience, 2004, 24, 10149-10158.	1.7	72
142	Glial cell expression of hepatocyte growth factor in vitreoretinal proliferative disease. Laboratory Investigation, 2004, 84, 963-972.	1.7	28
143	Characterization of the basic fibroblast growth factor-evoked proliferation of the human MÃ1⁄4ller cell line, MIO-M1. Graefe's Archive for Clinical and Experimental Ophthalmology, 2004, 242, 414-422.	1.0	44
144	Neuropeptide Y-evoked proliferation of retinal glial (Müller) cells. Graefe's Archive for Clinical and Experimental Ophthalmology, 2004, 242, 944-950.	1.0	34

#	Article	IF	CITATIONS
145	Selective staining by vital dyes of Müller glial cells in retinal wholemounts. Clia, 2004, 45, 59-66.	2.5	75
146	GABAAreceptors in Müller glial cells of the human retina. Glia, 2004, 46, 302-310.	2.5	28
147	A potassium channel-linked mechanism of glial cell swelling in the postischemic retina. Molecular and Cellular Neurosciences, 2004, 26, 493-502.	1.0	200
148	Age-related decrease of potassium currents in glial (Müller) cells of the human retina. Canadian Journal of Ophthalmology, 2003, 38, 464-468.	0.4	27
149	Upregulation of purinergic P2Y receptor-mediated calcium responses in glial cells during experimental detachment of the rabbit retina. Neuroscience Letters, 2003, 338, 131-134.	1.0	18
150	P2Y Receptor-Mediated Stimulation of MuÌ^ller Glial Cell DNA Synthesis: Dependence on EGF and PDGF Receptor Transactivation. , 2003, 44, 1211.		101
151	Experimental Dispase-Induced Retinopathy Causes Up-Regulation of P2Y Receptor-Mediated Calcium Responses in Müller Glial Cells. Ophthalmic Research, 2003, 35, 30-41.	1.0	24
152	Early Glial Cell Reactivity in Experimental Retinal Detachment: Effect of Suramin. , 2003, 44, 4114.		43
153	Diversity of Kir channel subunit mRNA expressed by retinal glial cells of the guinea-pig. NeuroReport, 2002, 13, 1037-1040.	0.6	46
154	Membrane conductance of Müller glial cells in proliferative diabetic retinopathy. Canadian Journal of Ophthalmology, 2002, 37, 221-227.	0.4	42
155	ATP-evoked calcium responses of radial glial (Müller) cells in the postnatal rabbit retina. Journal of Neuroscience Research, 2002, 70, 209-218.	1.3	36
156	Activation of P2Y receptors stimulates potassium and cation currents in acutely isolated human Müller (glial) cells. Glia, 2002, 37, 139-152.	2.5	59
157	Electrophysiological characterization of retinal Müller glial cells from mouse during postnatal development: Comparison with rabbit cells. Glia, 2002, 38, 268-272.	2.5	24
158	High-affinity GABA uptake in retinal glial (Müller) cells of the guinea pig: Electrophysiological characterization, immunohistochemical localization, and modeling of efficiency. Glia, 2002, 39, 217-228.	2.5	54
159	Kir potassium channel subunit expression in retinal glial cells: Implications for spatial potassium buffering. Glia, 2002, 39, 292-303.	2.5	189
160	P2Y receptor-mediated stimulation of Müller glial DNA synthesis. Investigative Ophthalmology and Visual Science, 2002, 43, 766-73.	3.3	46
161	Upregulation of extracellular ATP-induced Müller cell responses in a dispase model of proliferative vitreoretinopathy. Investigative Ophthalmology and Visual Science, 2002, 43, 870-81.	3.3	38
162	P2 receptors on macroglial cells: Functional implications for gliosis. Drug Development Research, 2001, 53, 140-147.	1.4	11

#	Article	IF	CITATIONS
163	Arachidonic acid-induced inhibition of Ca2+ channel currents in retinal glial (Müller) cells. , 2001, 239, 859-864.		9
164	Role of Muller cells in retinal degenerations. Frontiers in Bioscience - Landmark, 2001, 6, e77.	3.0	201
165	Role of glial K+ channels in ontogeny and gliosis: A hypothesis based upon studies on M�ller cells. , 2000, 29, 35-44.		121
166	Farnesol modulates membrane currents in human retinal glial cells. Journal of Neuroscience Research, 2000, 62, 396-402.	1.3	16
167	Farnesol modulates membrane currents in human retinal glial cells. , 2000, 62, 396.		1
168	Protein kinases A and C are opponents in modulating glial Ca2+-activated K+ channels. NeuroReport, 1999, 10, 1323-1327.	0.6	20
169	Glio-Neuronal Interactions in Retinal Development. , 1998, , 121-146.		4
170	Heterogeneous expression of Ca2+â^' dependent K+ currents by Müller glial cells. NeuroReport, 1997, 8, 3841-3845.	0.6	14
171	Mammalian retinal glial (M�ller) cells express large-conductance Ca2+-activated K+ channels that are modulated by Mg2+ and pH and activated by protein kinase A. , 1997, 19, 311-323.		63