Qiao Zhao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5713206/qiao-zhao-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

99	5,792	36	75
papers	citations	h-index	g-index
104	7,116 ext. citations	10.8	6.48
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
99	Upcycling of dynamic thiourea thermoset polymers by intrinsic chemical strengthening <i>Nature Communications</i> , 2022 , 13, 397	17.4	3
98	An Orthogonal Dynamic Covalent Polymer Network with Distinctive Topology Transformations for Shape- and Molecular Architecture Reconfiguration <i>Angewandte Chemie - International Edition</i> , 2022 , e202109941	16.4	2
97	A new stereolithographic 3D printing strategy for hydrogels with a large mechanical tunability and self-weldability. <i>Additive Manufacturing</i> , 2022 , 50, 102563	6.1	1
96	Rapidly and Repeatedly Reprogrammable Liquid Crystalline Elastomer via a Shape Memory Mechanism <i>Advanced Materials</i> , 2022 , e2201679	24	4
95	A conductive supramolecular hydrogel creates ideal endogenous niches to promote spinal cord injury repair <i>Bioactive Materials</i> , 2022 , 15, 103-119	16.7	4
94	Rapid digital light 3D printing enabled by a soft and deformable hydrogel separation interface. <i>Nature Communications</i> , 2021 , 12, 6070	17.4	4
93	Homeostatic growth of dynamic covalent polymer network toward ultrafast direct soft lithography. <i>Science Advances</i> , 2021 , 7, eabi7360	14.3	5
92	Ultrafast Digital Fabrication of Designable Architectured Liquid Crystalline Elastomer. <i>Advanced Materials</i> , 2021 , 33, e2105597	24	8
91	Differential diffusion driven far-from-equilibrium shape-shifting of hydrogels. <i>Nature Communications</i> , 2021 , 12, 6155	17.4	6
90	A thermadapt epoxy based on borate ester crosslinking and its carbon fiber composite as rapidly processable prepreg. <i>Composites Communications</i> , 2021 , 28, 100979	6.7	4
89	Autonomous Shapeshifting Hydrogels via Temporal Programming of Photoswitchable Dynamic Network. <i>Chemistry of Materials</i> , 2021 , 33, 2046-2053	9.6	10
88	Reconfigurable Polymer Networks for Digital Light Processing 3D Printing. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 15584-15590	9.5	5
87	Bioinspired Dual-Mode Temporal Communication via Digitally Programmable Phase-Change Materials. <i>Advanced Materials</i> , 2021 , 33, e2008119	24	22
86	UV curable micro-structured shape memory epoxy with tunable performance. <i>Journal of Applied Polymer Science</i> , 2021 , 138, 51319	2.9	1
85	Transparent origami glass. <i>Nature Communications</i> , 2021 , 12, 4261	17.4	6
84	4D Printing of Multi-Responsive Membrane for Accelerated In Vivo Bone Healing Via Remote Regulation of Stem Cell Fate. <i>Advanced Functional Materials</i> , 2021 , 31, 2103920	15.6	13
83	Dynamic Covalent Polymer Networks: A Molecular Platform for Designing Functions beyond Chemical Recycling and Self-Healing. <i>Chemical Reviews</i> , 2021 , 121, 1716-1745	68.1	152

(2019-2021)

82	A photo-driven metallo-supramolecular stress-free reversible shape memory polymer. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 6827-6830	13	12
81	Autonomous Off-Equilibrium Morphing Pathways of a Supramolecular Shape-Memory Polymer. <i>Advanced Materials</i> , 2021 , 33, e2102473	24	13
80	Digital light fabrication of reversible shape memory polymers. <i>Chemical Engineering Journal</i> , 2021 , 426, 131306	14.7	6
79	Solvent-Assisted 4D Programming and Reprogramming of Liquid Crystalline Organo-gels. <i>Advanced Materials</i> , 2021 , e2107855	24	6
78	Programmable Reversible Shape Transformation of Hydrogels Based on Transient Structural Anisotropy. <i>Advanced Materials</i> , 2020 , 32, e2001693	24	31
77	Modular 4D Printing via Interfacial Welding of Digital Light-Controllable Dynamic Covalent Polymer Networks. <i>Matter</i> , 2020 , 2, 1187-1197	12.7	46
76	Sequence-Rearranged Cocrystalline Polymer Network with Shape Reconfigurability and Tunable Switching Temperature. <i>ACS Macro Letters</i> , 2020 , 9, 588-594	6.6	13
75	Light-Coded Digital Crystallinity Patterns Toward Bioinspired 4D Transformation of Shape-Memory Polymers. <i>Advanced Functional Materials</i> , 2020 , 30, 2000522	15.6	29
74	Bio-based composites from plant based precursors and hydroxyapatite with shape-memory capability. <i>Composites Science and Technology</i> , 2020 , 194, 108138	8.6	10
73	Light-triggered topological programmability in a dynamic covalent polymer network. <i>Science Advances</i> , 2020 , 6, eaaz2362	14.3	42
72	Structural tuning of polycaprolactone based thermadapt shape memory polymer. <i>Polymer Chemistry</i> , 2020 , 11, 1369-1374	4.9	34
71	Shape-Memory Effect by Sequential Coupling of Functions over Different Length Scales in an Architectured Hydrogel. <i>Biomacromolecules</i> , 2020 , 21, 680-687	6.9	3
70	Glucose-responsive shape-memory cryogels. <i>Journal of Materials Research</i> , 2020 , 35, 2396-2404	2.5	7
69	On demand shape memory polymer via light regulated topological defects in a dynamic covalent network. <i>Nature Communications</i> , 2020 , 11, 4257	17.4	40
68	Drilling by light: ice-templated photo-patterning enabled by a dynamically crosslinked hydrogel. <i>Materials Horizons</i> , 2019 , 6, 1013-1019	14.4	32
67	Ultratough nacre-inspired epoxygraphene composites with shape memory properties. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 2787-2794	13	34
66	Synergetic Chemical and Physical Programming for Reversible Shape Memory Effect in a Dynamic Covalent Network with Two Crystalline Phases. <i>ACS Macro Letters</i> , 2019 , 8, 682-686	6.6	36
65	Rapid Open-Air Digital Light 3D Printing of Thermoplastic Polymer. <i>Advanced Materials</i> , 2019 , 31, e190.	3 9 70	54

64	Emulsion Lyophilization as a Facile Pathway to Fabricate Stretchable Polymer Foams Enabling Multishape Memory Effect and Clip Application. <i>ACS Applied Materials & Description Action</i> , 11, 3242.	3-3 2 43	o ⁷
63	4D Printing of a Digital Shape Memory Polymer with Tunable High Performance. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 32408-32413	9.5	62
62	Nacre-mimetic composite with intrinsic self-healing and shape-programming capability. <i>Nature Communications</i> , 2019 , 10, 800	17.4	94
61	Mechano-Plastic Pyrolysis of Dynamic Covalent Polymer Network toward Hierarchical 3D Ceramics. <i>Advanced Materials</i> , 2019 , 31, e1807326	24	36
60	A Soft Shape Memory Reversible Dry Adhesive. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2018 , 36, 953-959	3.5	5
59	4D Printing: History and Recent Progress. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2018 , 36, 563-575	3.5	102
58	Design and fabrication of nanofibrillated cellulose-containing bilayer hydrogel actuators with temperature and near infrared laser responses. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 1260-1271	7.3	36
57	Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot. <i>Science Advances</i> , 2018 , 4, eaao3865	14.3	255
56	Digital coding of mechanical stress in a dynamic covalent shape memory polymer network. <i>Nature Communications</i> , 2018 , 9, 4002	17.4	82
55	Dynamic Covalent Polymer Networks: from Old Chemistry to Modern Day Innovations. <i>Advanced Materials</i> , 2017 , 29, 1606100	24	473
54	Omnidirectional Shape Memory Effect via Lyophilization of PEG Hydrogels. <i>Macromolecular Rapid Communications</i> , 2017 , 38, 1600746	4.8	14
53	Multifunctional shape-memory foams with highly tunable properties via organo-phase cryo-polymerization. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9793-9800	13	12
52	Superstretchable Nacre-Mimetic Graphene/Poly(vinyl alcohol) Composite Film Based on Interfacial Architectural Engineering. <i>ACS Nano</i> , 2017 , 11, 4777-4784	16.7	117
51	Biomimetic Architectured Graphene Aerogel with Exceptional Strength and Resilience. <i>ACS Nano</i> , 2017 , 11, 6817-6824	16.7	214
50	Healable, Reconfigurable, Reprocessable Thermoset Shape Memory Polymer with Highly Tunable Topological Rearrangement Kinetics. <i>ACS Applied Materials & District Rearrangement Access</i> , 2017, 9, 22077-22082	9.5	129
49	Catalyst-Free Thermoset Polyurethane with Permanent Shape Reconfigurability and Highly Tunable Triple-Shape Memory Performance. <i>ACS Macro Letters</i> , 2017 , 6, 326-330	6.6	154
48	Ultrafast Digital Printing toward 4D Shape Changing Materials. <i>Advanced Materials</i> , 2017 , 29, 1605390	24	288
47	A Metallosupramolecular Shape-Memory Polymer with Gradient Thermal Plasticity. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 12599-12602	16.4	58

(2013-2017)

46	A Metallosupramolecular Shape-Memory Polymer with Gradient Thermal Plasticity. <i>Angewandte Chemie</i> , 2017 , 129, 12773-12776	3.6	19
45	Innentitelbild: Thermoset Shape-Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation (Angew. Chem. 38/2016). <i>Angewandte Chemie</i> , 2016 , 128, 11474-11474	3.6	1
44	A bioinspired reversible snapping hydrogel assembly. <i>Materials Horizons</i> , 2016 , 3, 422-428	14.4	84
43	Exploring Dynamic Equilibrium of DielsAlder Reaction for Solid State Plasticity in Remoldable Shape Memory Polymer Network. <i>ACS Macro Letters</i> , 2016 , 5, 805-808	6.6	159
42	Shape memory polymer network with thermally distinct elasticity and plasticity. <i>Science Advances</i> , 2016 , 2, e1501297	14.3	316
41	Shape memory polymers for flexible electronics. <i>Scientia Sinica: Physica, Mechanica Et Astronomica</i> , 2016 , 46, 044602	1.5	5
40	Thermoset Shape-Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11421-5	16.4	341
39	Unusual Aspects of Supramolecular Networks: Plasticity to Elasticity, Ultrasoft Shape Memory, and Dynamic Mechanical Properties. <i>Advanced Functional Materials</i> , 2016 , 26, 931-937	15.6	49
38	Thermoset Shape-Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation. <i>Angewandte Chemie</i> , 2016 , 128, 11593-11597	3.6	36
37	Bio-Inspired Fast Actuation by Mechanical Instability of Thermoresponding Hydrogel Structures. Journal of Applied Mechanics, Transactions ASME, 2016, 83,	2.7	11
36	A highly stereoselective synthesis of C-24 and C-25 oxysterols from desmosterol. <i>Steroids</i> , 2016 , 109, 16-21	2.8	5
35	High strain epoxy shape memory polymer. <i>Polymer Chemistry</i> , 2015 , 6, 3046-3053	4.9	129
34	Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. <i>Progress in Polymer Science</i> , 2015 , 49-50, 79-120	29.6	821
33	N-Hydroxyphthalimide catalyzed allylic oxidation of steroids with t-butyl hydroperoxide. <i>Steroids</i> , 2015 , 94, 1-6	2.8	5
32	Investigation on the synthesis of 25-hydroxycholesterol. <i>Steroids</i> , 2014 , 85, 1-5	2.8	7
31	Supramolecular Lego assembly towards three-dimensional multi-responsive hydrogels. <i>Advanced Materials</i> , 2014 , 26, 5665-9	24	183
30	Hidden Thermoreversible Actuation Behavior of Nafion and Its Morphological Origin. <i>Macromolecules</i> , 2014 , 47, 1085-1089	5.5	29
29	Investigation on the One-Step Preparation of 2-Substituted Benzo[B]Thiophenes. <i>Phosphorus, Sulfur and Silicon and the Related Elements,</i> 2013 , 188, 873-878	1	2

28	Investigation on the reduction of sulfonyl chlorides with sulfur dioxide in water as solvent. <i>Monatshefte Fil Chemie</i> , 2013 , 144, 1547-1550	1.4	1
27	Enzymatically degradable oxidized dextranthitosan hydrogels with an anisotropic aligned porous structure. <i>Soft Matter</i> , 2013 , 9, 11136	3.6	22
26	Shape-memory polymers with multiple transitions: complex actively moving polymers. <i>Soft Matter</i> , 2013 , 9, 1744-1755	3.6	113
25	Improved Synthesis of 2-Chloro-3-amino-4-methylpyridine. <i>Journal of Heterocyclic Chemistry</i> , 2013 , 50, 145-148	1.9	1
24	Synthesis and characterization of biodegradable macroporous cryogels crosslinked by chitosan oligosaccharide-graft-acrylic acid. <i>Soft Matter</i> , 2012 , 8, 4382	3.6	9
23	Preparation of poly(ethylene glycol) aligned porous cryogels using a unidirectional freezing technique. <i>Soft Matter</i> , 2012 , 8, 3620	3.6	69
22	Synthesis and Properties of a Novel Flame-Retardant Epoxy Resin Containing Biphenylyl/Phenyl Phosphonic Moieties. <i>Polymer-Plastics Technology and Engineering</i> , 2012 , 51, 896-903		16
21	Macroporous double-network cryogels: formation mechanism, enhanced mechanical strength and temperature/pH dual sensitivity. <i>Soft Matter</i> , 2011 , 7, 4284	3.6	42
20	Effects of Carbon Black Content on Microwave Absorbing and Mechanical Properties of Linear Low Density Polyethylene/Ethylene-Octene Copolymer/Calcium Carbonate Composites. Polymer-Plastics Technology and Engineering, 2011, 50, 89-94		17
19	The Curing Behavior and Properties of Diglycidyl Ether of 4,4?-Bis(4-hydroxybenzoyloxy)-3,3?,5,5?-tetramethylbiphenyl and its Composites with Multi-Wall Carbon Nanotubes. <i>Polymer-Plastics Technology and Engineering</i> , 2010 , 49, 1428-1432		7
18	Synthesis of Thermo-Sensitive Nanocapsules via Inverse Miniemulsion Polymerization Using a PEO R AFT Agent. <i>Macromolecules</i> , 2010 , 43, 568-571	5.5	54
17	Linear Low-Density Polyethylene/Ethylene-Octene Copolymer/Multi-Walled Carbon Nanotube Composites with Microwave Absorbing Properties. <i>Polymer-Plastics Technology and Engineering</i> , 2010 , 49, 481-486		14
16	Study of the properties of hydrolyzed polyacrylamide hydrogels with various pore structures and rapid pH-sensitivities. <i>Reactive and Functional Polymers</i> , 2010 , 70, 602-609	4.6	40
15	Properties of a poly(acrylamide-co-diallyl dimethyl ammonium chloride) hydrogel synthesized in a water[bnic liquid binary system. <i>Journal of Applied Polymer Science</i> , 2010 , 115, 2940-2945	2.9	14
14	Microwave-absorbing properties of linear low-density polyethylene/ethyleneBctene copolymer/carbonyl iron powder composites. <i>Journal of Applied Polymer Science</i> , 2009 , 111, 1911-1916	2.9	10
13	Cure kinetics of an epoxy resin containing naphthyl/dicyclopentadiene moieties and bis-phenoxy (3-hydroxy) phosphine oxide system and properties of its cured polymer. <i>Journal of Applied Polymer Science</i> , 2009 , 112, 761-768	2.9	14
12	Microwave absorbing properties of linear low density polyethylene/ethyleneBctene copolymer composites filled with short carbon fiber. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2009 , 162, 162-166	3.1	50
11	Synthesis of macroporous thermosensitive hydrogels: a novel method of controlling pore size. <i>Langmuir</i> , 2009 , 25, 3249-54	4	42

LIST OF PUBLICATIONS

10	Effects of the Heating Rate and the Amount of Organic Montmorillonite on the Thermal Properties of the Novel Liquid Crystalline Epoxy Nanocomposite. <i>Polymer-Plastics Technology and Engineering</i> , 2008 , 47, 363-366		6
9	Studies on Cure Kinetics of Diglycidyl Ether of 4,4?-Bisphenol/4,4?-Diaminobiphenyl Using the Advanced Isoconversional Method. <i>Polymer-Plastics Technology and Engineering</i> , 2008 , 47, 1105-1108		6
8	Horseradish peroxidase immobilized in macroporous hydrogel for acrylamide polymerization. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 2222-2232	2.5	32
7	Effect of 1,4-dioxane on synthesis of macroporous poly(N-isopropylacrylamide) hydrogels. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 6594-6603	2.5	14
6	Synthesis and characterization of a novel heat resistant epoxy resin based on N,N?-bis(5-hydroxy-1-naphthyl)pyromellitic diimide. <i>Polymer</i> , 2008 , 49, 5249-5253	3.9	41
5	Visible-light-driven boron/ferrum/cerium/titania photocatalyst. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2008 , 200, 141-147	4.7	21
4	Visible-light-driven titania/silica photocatalyst co-doped with boron and ferrum. <i>Applied Surface Science</i> , 2008 , 254, 6731-6735	6.7	14
3	Synthesis of macroporous poly(N-isopropylacrylamide) hydrogel with ultrarapid swellingdeswelling properties. <i>Journal of Applied Polymer Science</i> , 2007 , 104, 4080-4087	2.9	21
2	Evaluation of diffusion in gel entrapment cell culture within hollow fibers. <i>World Journal of Gastroenterology</i> , 2005 , 11, 1599-604	5.6	40
1	Converse Two-way Shape Memory Effect Through Dynamic Covalent Network Design. <i>Journal of Materials Chemistry A</i> ,	13	3