Marina Koroleva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5713131/publications.pdf

Version: 2024-02-01

758635 642321 41 587 12 23 citations h-index g-index papers 41 41 41 655 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Nanoemulsions: the properties, methods of preparation and promising applications. Russian Chemical Reviews, 2012, 81, 21-43.	2.5	183
2	Nanoemulsions stabilized by non-ionic surfactants: stability and degradation mechanisms. Physical Chemistry Chemical Physics, 2018, 20, 10369-10377.	1.3	60
3	Effect of Ionic Strength of Dispersed Phase on Ostwald Ripening in Water-in-Oil Emulsions. Colloid Journal, 2003, 65, 40-43.	0.5	37
4	Ostwald ripening in macro- and nanoemulsions. Russian Chemical Reviews, 2021, 90, 293-323.	2.5	23
5	Water mass transfer in W/O emulsions. Journal of Colloid and Interface Science, 2006, 297, 778-784.	5.0	19
6	"Green" Synthesis of Cerium Oxide Particles in Water Extracts Petroselinum crispum. Current Nanomaterials, 2019, 4, 176-190.	0.2	18
7	Solid lipid nanoparticles and nanoemulsions with solid shell: Physical and thermal stability. Journal of Colloid and Interface Science, 2022, 610, 61-69.	5.0	18
8	Properties of nanocapsules obtained from oil-in-water nanoemulsions. Mendeleev Communications, 2015, 25, 389-390.	0.6	16
9	Emulsions stabilized with mixed SiO2 and Fe3O4 nanoparticles: mechanisms of stabilization and long-term stability. Physical Chemistry Chemical Physics, 2019, 21, 1536-1545.	1.3	15
10	Fire-resistant polymer nanocomposites based on metal oxides and hydroxides. Theoretical Foundations of Chemical Engineering, 2010, 44, 772-777.	0.2	13
11	Controlling pore sizes in highly porous Poly(Styrene-Divinylbenzene) sponges for preferable oil sorption. Polymer Testing, 2019, 77, 105931.	2.3	13
12	Liquid membranes for extraction. Petroleum Chemistry, 2014, 54, 581-594.	0.4	12
13	Simulation of flocculation in W/O emulsions and experimental study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 481, 237-243.	2.3	12
14	Paraffin wax emulsions stabilized with polymers, surfactants, and nanoparticles. Theoretical Foundations of Chemical Engineering, 2017, 51, 125-132.	0.2	12
15	Microemulsions and nanoemulsions modified with cationic surfactants for improving the solubility and therapeutic efficacy of loaded drug indomethacin. Nanotechnology, 2022, 33, 155103.	1.3	12
16	Pickering emulsions: structure, properties and the use as colloidosomes and stimuli-sensitive emulsions. Russian Chemical Reviews, 2022, 91, RCR5024.	2.5	10
17	Preparation and characterization of lipid microcapsules coated with SiO 2 @Al 2 O 3 core-shell nanoparticles as carries for lipophilic drug delivery. Materials Chemistry and Physics, 2017, 202, 1-6.	2.0	9
18	Highly porous polymeric sponges for oil sorption. Mendeleev Communications, 2019, 29, 176-177.	0.6	9

#	Article	IF	CITATIONS
19	Synthesis of Hydroxyapatite Nanoparticles by Controlled Precipitation in the Presence of Sodium Dodecyl Sulfate. Colloid Journal, 2020, 82, 275-283.	0.5	9
20	Pickering emulsions stabilized with magnetite, gold, and silica nanoparticles: Mathematical modeling and experimental study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 125001.	2.3	9
21	Water Transport by Nanodispersion Droplets in a Water-in-Oil Emulsion. Colloid Journal, 2003, 65, 35-39.	0.5	8
22	Influence of hydrophobic Au nanoparticles on SOPC lipid model systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125090.	2.3	7
23	Extracting emulsions for the extraction of substances from aqueous media. Russian Chemical Reviews, 1991, 60, 1255-1270.	2.5	6
24	Flocculation of dispersed phase droplets in water-in-oil emulsions: Experiment and mathematical simulation. Colloid Journal, 2011, 73, 65-71.	0.5	6
25	Stability and optical properties of dispersions of CdS, ZnS, and Ag2S nanoparticles synthesized in microemulsion. Russian Journal of Inorganic Chemistry, 2012, 57, 320-326.	0.3	6
26	Simulations of emulsion stabilization by silica nanoparticles. Mendeleev Communications, 2017, 27, 518-520.	0.6	6
27	The Stability of Highly Concentrated Water-in-Oil Emulsions and Structure of Highly Porous Polystyrene Produced from Them. Colloid Journal, 2018, 80, 272-281.	0.5	6
28	Sedimentation stability of aqueous dispersions of nanodiamond agglomerates. Theoretical Foundations of Chemical Engineering, 2009, 43, 478-481.	0.2	5
29	Langevin-dynamics simulation of flocculation in water-in-oil emulsions. Colloid Journal, 2013, 75, 660-667.	0.5	5
30	Stabilization of Oil-in-Water Emulsions with SiO2 and Fe3O4 Nanoparticles. Colloid Journal, 2018, 80, 282-289.	0.5	5
31	Synthesis of copper nanoparticles stabilized by polyoxyethylenesorbitan monooleate. Russian Journal of Inorganic Chemistry, 2011, 56, 6-10.	0.3	4
32	Effect of nano-sized metal compounds on the flame-proof properties of plasticized polyvinyl chloride. Fibre Chemistry, 2009, 41, 80-84.	0.0	3
33	Composites Composed of Hydrophilic and Hydrophobic Polymers, and Hydroxyapatite Nanoparticles: Synthesis, Characterization, and Study of Their Biocompatible Properties. Journal of Functional Biomaterials, 2021, 12, 55.	1.8	3
34	Hydroxyapatite nanoparticle prepared by controlled precipitation from aqueous phase. Russian Journal of Inorganic Chemistry, 2016, 61, 674-680.	0.3	2
35	Modeling droplet aggregation and percolation clustering in emulsions. Arabian Journal of Chemistry, 2019, 12, 4458-4465.	2.3	2
36	Synthesis of CdS, ZnS and Ag2S nanoparticles stabilized by sodium bis(2-ethylhexyl)sulfosuccinate and polyoxyethylenesorbitan monooleate in aqueous medium. Russian Journal of Inorganic Chemistry, 2013, 58, 1034-1039.	0.3	1

3

#	Article	IF	CITATIONS
37	Stabilization of Oil-in-Water Pickering Emulsions with Surfactant-Modified SiO2 Nanoparticles. Colloid Journal, 2018, 80, 783-791.	0.5	1
38	A study on the biological activity of biosynthesized nanoparticles of metal oxides. IOP Conference Series: Earth and Environmental Science, 2019, 341, 012176.	0.2	1
39	Effect of the Stability of Highly Concentrated Emulsions Containing Styrene–Divinylbenzene Mixtures on the Structure of Highly Porous Copolymers Formed on Their Basis. Colloid Journal, 2020, 82, 767-775.	0.5	1
40	Modes of operation of an apparatus for membrane extraction from blood in a multiple emulsion. Bio-Medical Engineering, 1989, 23, 192-196.	0.3	0
41	Nanoemulsions with sea buckthorn oil and \hat{l}^2 -carrageenan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 129149.	2.3	O