Leslie J Robbins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5713000/publications.pdf

Version: 2024-02-01

51 papers	2,344 citations	23 h-index	214721 47 g-index
52	52	52	2028
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	DIRECT Re-Os DATING OF MANGANESE CARBONATE ORES AND IMPLICATIONS FOR THE FORMATION OF THE ORTOKARNASH MANGANESE DEPOSIT, NORTHWEST CHINA. Economic Geology, 2022, 117, 237-252.	1.8	6
2	Chromium evidence for protracted oxygenation during the Paleoproterozoic. Earth and Planetary Science Letters, 2022, 584, 117501.	1.8	7
3	Mineral paragenesis in Paleozoic manganese ore deposits: Depositional versus post-depositional formation processes. Geochimica Et Cosmochimica Acta, 2022, 325, 65-86.	1.6	8
4	Binding and transport of Cr(III) by clay minerals during the Great Oxidation Event. Earth and Planetary Science Letters, 2022, 584, 117503.	1.8	3
5	Ancient roots of tungsten in western North America. Geology, 2022, 50, 791-795.	2.0	9
6	Geobiology and Geomicrobiology. , 2021, , 554-568.		3
7	Episodic ferruginous conditions associated with submarine volcanism led to the deposition of a Late Carboniferous iron formation. Geochimica Et Cosmochimica Acta, 2021, 292, 1-23.	1.6	11
8	Iron Isotopes Reveal a Benthic Iron Shuttle in the Palaeoproterozoic Zaonega Formation: Basinal Restriction, Euxinia, and the Effect on Global Palaeoredox Proxies. Minerals (Basel, Switzerland), 2021, 11, 368.	0.8	5
9	Timing the evolution of antioxidant enzymes in cyanobacteria. Nature Communications, 2021, 12, 4742.	5.8	57
10	Global continental volcanism controlled the evolution of the oceanic nickel reservoir. Earth and Planetary Science Letters, 2021, 572, 117116.	1.8	6
11	Depositional and Environmental Constraints on the Late Neoarchean Dagushan Deposit (Anshan-Benxi) Tj ETQq1 1 1575-1597.		4 rgBT /O <mark>ve</mark> 10
12	Phosphate remobilization from banded iron formations during metamorphic mineral transformations. Chemical Geology, 2021, 584, 120489.	1.4	7
13	Iron and Carbon Isotope Constraints on the Formation Pathway of Iron-Rich Carbonates within the Dagushan Iron Formation, North China Craton. Minerals (Basel, Switzerland), 2021, 11, 94.	0.8	2
14	Microbial processes during deposition and diagenesis of Banded Iron Formations. Palaontologische Zeitschrift, 2021, 95, 593-610.	0.8	9
15	<i>Diopatra cuprea</i> i>worm burrow parchment: a cautionary tale of infaunal surface reactivity. Lethaia, 2020, 53, 47-61.	0.6	7
16	Petrography and Geochemistry of the Carboniferous Ortokarnash Manganese Deposit in the Western Kunlun Mountains, Xinjiang Province, China: Implications for the Depositional Environment and the Origin of Mineralization. Economic Geology, 2020, 115, 1559-1588.	1.8	21
17	Hydrothermally induced 34S enrichment in pyrite as an alternative explanation of the Late-Devonian sulfur isotope excursion in South China. Geochimica Et Cosmochimica Acta, 2020, 283, 1-21.	1.6	22
18	Weathering, alteration and reconstructing Earth's oxygenation. Interface Focus, 2020, 10, 20190140.	1.5	25

#	Article	lF	CITATIONS
19	Palaeoproterozoic oxygenated oceans following the Lomagundi–Jatuli Event. Nature Geoscience, 2020, 13, 302-306.	5.4	47
20	New constraints on the onset age of the Emeishan LIP volcanism and implications for the Guadalupian mass extinction. Lithos, 2020, 360-361, 105441.	0.6	10
21	Trace Metals. , 2020, , 1-5.		0
22	Petrological evidence supports the death mask model for the preservation of Ediacaran soft-bodied organisms in South Australia: COMMENT. Geology, 2019, 47, e473-e473.	2.0	4
23	Potentiometric Titrations to Characterize the Reactivity of Geomicrobial Surfaces., 2019,, 79-92.		3
24	Colloidal transport mechanisms and sequestration of U, Ni, and As in meromictic mine pit lakes. Geochimica Et Cosmochimica Acta, 2019, 265, 292-312.	1.6	10
25	The impact of ionic strength on the proton reactivity of clay minerals. Chemical Geology, 2019, 529, 119294.	1.4	27
26	Genesis of the Neoproterozoic-Early Cambrian banded iron ore-bearing sedimentary rocks in the Jiertieke-Zankan iron ore belt, West Kunlun Orogenic Belt, Xinjiang (NW China). Journal of Asian Earth Sciences, 2019, 173, 143-160.	1.0	8
27	Hydrogeological constraints on the formation of Palaeoproterozoic banded iron formations. Nature Geoscience, 2019, 12, 558-563.	5.4	49
28	Adsorption of biologically critical trace elements to the marine cyanobacterium Synechococcus sp. PCC 7002: Implications for marine trace metal cycling. Chemical Geology, 2019, 525, 28-36.	1.4	7
29	The rise of oxygen-driven arsenic cycling at ca. 2.48 Ga. Geology, 2019, 47, 243-246.	2.0	27
30	Reply to Desmond F. Lascelles' comment on "Tyler Warchola, Stefan V. Lalonde, Ernesto Pecoits, Konstantin von Gunten, Leslie J. Robbins, Daniel S. Alessi, Pascal Philippot, Kurt O. Konhauser. Petrology and geochemistry of the Boolgeeda iron formation, Hamersley Basin, Western Australia. Precambrian Research, (2018) 316: 155–173― Precambrian Research, 2019, 327, 363-365.	1.2	O
31	A comparison of bulk versus laser ablation trace element analyses in banded iron formations: Insights into the mechanisms leading to compositional variability. Chemical Geology, 2019, 506, 197-224.	1.4	12
32	Clinoform identification and correlation in fineâ€grained sediments: A case study using the Triassic Montney Formation. Sedimentology, 2018, 65, 263-302.	1.6	28
33	Phytoplankton contributions to the trace-element composition of Precambrian banded iron formations. Bulletin of the Geological Society of America, 2018, 130, 941-951.	1.6	28
34	Application of surface complexation modeling to trace metals uptake by biochar-amended agricultural soils. Applied Geochemistry, 2018, 88, 103-112.	1.4	30
35	Earth's youngest banded iron formation implies ferruginous conditions in the Early Cambrian ocean. Scientific Reports, 2018, 8, 9970.	1.6	33
36	Petrology and geochemistry of the Boolgeeda Iron Formation, Hamersley Basin, Western Australia. Precambrian Research, 2018, 316, 155-173.	1.2	24

#	Article	IF	CITATIONS
37	Hydrocarbon potential and biomarker assemblages of Paleogene source rocks in the Cangdong sag, Bohai Bay Basin, China. Journal of Geochemical Exploration, 2018, 194, 9-18.	1.5	6
38	Measurements of bacterial mat metal binding capacity in alkaline and carbonate-rich systems. Chemical Geology, 2017, 451, 17-24.	1.4	10
39	Field- and Lab-Based Potentiometric Titrations of Microbial Mats from the Fairmont Hot Spring, Canada. Geomicrobiology Journal, 2017, 34, 851-863.	1.0	4
40	Evolution of the global phosphorus cycle. Nature, 2017, 541, 386-389.	13.7	397
41	Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history. Earth-Science Reviews, 2017, 172, 140-177.	4.0	304
42	Trace elements at the intersection of marine biological and geochemical evolution. Earth-Science Reviews, 2016, 163, 323-348.	4.0	135
43	Chemical and textural overprinting of ancient stromatolites: Timing, processes, and implications for their use as paleoenvironmental proxies. Precambrian Research, 2016, 278, 145-160.	1.2	31
44	Limited Zn and Ni mobility during simulated iron formation diagenesis. Chemical Geology, 2015, 402, 30-39.	1.4	24
45	The Archean Nickel Famine Revisited. Astrobiology, 2015, 15, 804-815.	1.5	55
46	Cobalt and marine redox evolution. Earth and Planetary Science Letters, 2014, 390, 253-263.	1.8	95
47	Nickel partitioning in biogenic and abiogenic ferrihydrite: The influence of silica and implications for ancient environments. Geochimica Et Cosmochimica Acta, 2014, 140, 65-79.	1.6	56
48	Proterozoic ocean redox and biogeochemical stasis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5357-5362.	3.3	418
49	Bioavailability of zinc in marine systems through time. Nature Geoscience, 2013, 6, 125-128.	5.4	84
50	Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution. Geobiology, 2013, 11, 295-306.	1.1	60
51	The composition of Earth's oldest iron formations: The Nuvvuagittuq Supracrustal Belt (Qu $ ilde{A}$ ©bec,) Tj ETQq $1\ 1$	0.784314 1.8	rgBT/Overlo