
Tomomi Shimogori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5712993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular cell identities in the mediodorsal thalamus of infant mice and marmoset. Journal of Comparative Neurology, 2022, 530, 963-977.	0.9	0
2	Hornerin deposits in neuronal intranuclear inclusion disease: direct identification of proteins with compositionally biased regions in inclusions. Acta Neuropathologica Communications, 2022, 10, 28.	2.4	4
3	Dual midbrain and forebrain origins of thalamic inhibitory interneurons. ELife, 2021, 10, .	2.8	40
4	Role of an Atypical Cadherin Gene, <i>Cdh23</i> in Prepulse Inhibition, and Implication of <i>CDH23</i> in Schizophrenia. Schizophrenia Bulletin, 2021, 47, 1190-1200.	2.3	7
5	Cellular-resolution gene expression profiling in the neonatal marmoset brain reveals dynamic species- and region-specific differences. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
6	Gene regulatory networks controlling differentiation, survival, and diversification of hypothalamic Lhx6-expressing GABAergic neurons. Communications Biology, 2021, 4, 95.	2.0	26
7	Chemico-genetic discovery of astrocytic control of inhibition in vivo. Nature, 2020, 588, 296-302.	13.7	130
8	Diffusible GRAPHIC to visualize morphology of cells after specific cell–cell contact. Scientific Reports, 2020, 10, 14437.	1.6	8
9	The polymicrogyria-associated GPR56 promoter preferentially drives gene expression in developing GABAergic neurons in common marmosets. Scientific Reports, 2020, 10, 21516.	1.6	10
10	Gene expression profiling in neuronal cells identifies a different type of transcriptome modulated by NF-Y. Scientific Reports, 2020, 10, 21714.	1.6	4
11	Proteomics-Based Approach Identifies Altered ER Domain Properties by ALS-Linked VAPB Mutation. Scientific Reports, 2020, 10, 7610.	1.6	17
12	FACS-array–based cell purification yields a specific transcriptome of striatal medium spiny neurons in a murine Huntington disease model. Journal of Biological Chemistry, 2020, 295, 9768-9785.	1.6	9
13	Genetically Encoded Fluorescent Indicator GRAPHIC Delineates Intercellular Connections. IScience, 2019, 15, 28-38.	1.9	21
14	Spatially restricted longâ€ŧerm transgene expression in the developing skin used for studying the interaction of epidermal development and sensory innervation. Development Growth and Differentiation, 2019, 61, 276-282.	0.6	0
15	Sonic Hedgehog Is a Remotely Produced Cue that Controls Axon Guidance Trans-axonally at a Midline Choice Point. Neuron, 2018, 97, 326-340.e4.	3.8	66
16	Digital gene atlas of neonate common marmoset brain. Neuroscience Research, 2018, 128, 1-13.	1.0	37
17	Rapid dissemination of alpha-synuclein seeds through neural circuits in an in-vivo prion-like seeding experiment. Acta Neuropathologica Communications, 2018, 6, 96.	2.4	56
18	Semaphorin 6D reverse signaling controls macrophage lipid metabolism and anti-inflammatory polarization. Nature Immunology, 2018, 19, 561-570.	7.0	90

TOMOMI SHIMOGORI

#	Article	IF	CITATIONS
19	Mouse <i>Fgf8</i> â€Creâ€LacZ lineage analysis defines the territory of the postnatal mammalian isthmus. Journal of Comparative Neurology, 2017, 525, 2782-2799.	0.9	50
20	Nucleocytoplasmic Shuttling of Histone Deacetylase 9 Controls Activity-Dependent Thalamocortical Axon Branching. Scientific Reports, 2017, 7, 6024.	1.6	13
21	Different regulation of limb development by p63 transcript variants. PLoS ONE, 2017, 12, e0174122.	1.1	4
22	Genomeâ€wide analyses in neuronal cells reveal that upstream transcription factors regulate lysosomal gene expression. FEBS Journal, 2016, 283, 1077-1087.	2.2	10
23	Differential roles of NF-Y transcription factor in ER chaperone expression and neuronal maintenance in the CNS. Scientific Reports, 2016, 6, 34575.	1.6	10
24	FUS/TLS acts as an aggregation-dependent modifier of polyglutamine disease model mice. Scientific Reports, 2016, 6, 35236.	1.6	17
25	Brain/MINDS: A Japanese National Brain Project for Marmoset Neuroscience. Neuron, 2016, 92, 582-590.	3.8	174
26	Reversal of axonal growth defects in an extraocular fibrosis model by engineering the kinesin–microtubule interface. Nature Communications, 2016, 7, 10058.	5.8	26
27	Serine 403-phosphorylated p62/SQSTM1 immunoreactivity in inclusions of neurodegenerative diseases. Neuroscience Research, 2016, 103, 64-70.	1.0	18
28	TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Human Molecular Genetics, 2015, 24, 4429-4442.	1.4	249
29	FUS/TLS deficiency causes behavioral and pathological abnormalities distinct from amyotrophic lateral sclerosis. Acta Neuropathologica Communications, 2015, 3, 24.	2.4	82
30	Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9. Development (Cambridge), 2015, 142, 1113-24.	1.2	55
31	Migration of Founder Epithelial Cells Drives Proper Molar Tooth Positioning and Morphogenesis. Developmental Cell, 2015, 35, 713-724.	3.1	36
32	ECHO-liveFISH: <i>in vivo</i> RNA labeling reveals dynamic regulation of nuclear RNA foci in living tissues. Nucleic Acids Research, 2015, 43, e126-e126.	6.5	38
33	Depletion of p62 reduces nuclear inclusions and paradoxically ameliorates disease phenotypes in Huntington's model mice. Human Molecular Genetics, 2015, 24, 1092-1105.	1.4	56
34	Large-Scale RNA Interference Screening in Mammalian Cells Identifies Novel Regulators of Mutant Huntingtin Aggregation. PLoS ONE, 2014, 9, e93891.	1.1	10
35	Cell-Autonomous Repression of Shh by Transcription Factor Pax6 Regulates Diencephalic Patterning by Controlling the Central Diencephalic Organizer. Cell Reports, 2014, 8, 1405-1418.	2.9	35
36	NF-Y inactivation causes atypical neurodegeneration characterized by ubiquitin and p62 accumulation and endoplasmic reticulum disorganization. Nature Communications, 2014, 5, 3354.	5.8	38

TOMOMI SHIMOGORI

#	Article	IF	CITATIONS
37	Singular localization of sodium channel β4 subunit in unmyelinated fibres and its role in the striatum. Nature Communications, 2014, 5, 5525.	5.8	61
38	Retinal Input Directs the Recruitment of Inhibitory Interneurons into Thalamic Visual Circuits. Neuron, 2014, 81, 1057-1069.	3.8	63
39	BTBD3 Controls Dendrite Orientation Toward Active Axons in Mammalian Neocortex. Science, 2013, 342, 1114-1118.	6.0	90
40	A Bilirubin-Inducible Fluorescent Protein from Eel Muscle. Cell, 2013, 153, 1602-1611.	13.5	269
41	Dual origins of the mammalian accessory olfactory bulb revealed by an evolutionarily conserved migratory stream. Nature Neuroscience, 2013, 16, 157-165.	7.1	47
42	The Indirect Role of Fibroblast Growth Factor-8 in Defining Neurogenic Niches of the Olfactory/GnRH Systems. Journal of Neuroscience, 2013, 33, 19620-19634.	1.7	47
43	Comparative Anatomy of Marmoset and Mouse Cortex from Genomic Expression. Journal of Neuroscience, 2012, 32, 5039-5053.	1.7	72
44	Early B-cell factors 2 and 3 (EBF2/3) regulate early migration of Cajal–Retzius cells from the cortical hem. Developmental Biology, 2012, 365, 277-289.	0.9	41
45	Diversity of thalamic progenitor cells and postmitotic neurons. European Journal of Neuroscience, 2012, 35, 1554-1562.	1.2	36
46	A SINE-Derived Element Constitutes a Unique Modular Enhancer for Mammalian Diencephalic Fgf8. PLoS ONE, 2012, 7, e43785.	1.1	33
47	Mouse in Utero Electroporation: Controlled Spatiotemporal Gene Transfection. Journal of Visualized Experiments, 2011, , .	0.2	41
48	Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nature Neuroscience, 2011, 14, 1481-1488.	7.1	1,096
49	Dynamic spatiotemporal gene expression in embryonic mouse thalamus. Journal of Comparative Neurology, 2011, 519, 528-543.	0.9	65
50	Regionâ€specific gene expression in early postnatal mouse thalamus. Journal of Comparative Neurology, 2011, 519, 544-561.	0.9	53
51	Threeâ€dimensional diffusion tensor microimaging for anatomical characterization of the mouse brain. Magnetic Resonance in Medicine, 2010, 64, 249-261.	1.9	90
52	Emergence of mammals by emergency: exaptation. Genes To Cells, 2010, 15, 801-812.	0.5	27
53	A genomic atlas of mouse hypothalamic development. Nature Neuroscience, 2010, 13, 767-775.	7.1	354
54	Molecular Pathways Controlling Development of Thalamus and Hypothalamus: From Neural Specification to Circuit Formation. Journal of Neuroscience, 2010, 30, 14925-14930.	1.7	71

TOMOMI SHIMOGORI

#	Article	IF	CITATIONS
55	FGF8 acts as a classic diffusible morphogen to pattern the neocortex. Development (Cambridge), 2010, 137, 3439-3448.	1.2	92
56	Segregation of Ipsilateral Retinal Ganglion Cell Axons at the Optic Chiasm Requires the Shh Receptor Boc. Journal of Neuroscience, 2010, 30, 266-275.	1.7	77
5 7	LGI mRNA expression in the developing mouse brain. Neuroscience Research, 2010, 68, e371.	1.0	0
58	Optical Recording of Electrical Activity of Cortical Layer 2/3 Pyramidal Neurons Using A Genetically-Encoded Voltage Probe. Biophysical Journal, 2010, 98, 214a-215a.	0.2	0
59	The role of Fgf8 in telencephalic and diencephalic patterning. Seminars in Cell and Developmental Biology, 2009, 20, 719-725.	2.3	17
60	Practical Application of Microelectroporation into Developing Mouse Brain. , 2009, , 153-167.		1
61	Gene application with <i>in utero</i> electroporation in mouse embryonic brain. Development Growth and Differentiation, 2008, 50, 499-506.	0.6	71
62	Fgf8 controls regional identity in the developing thalamus. Development (Cambridge), 2008, 135, 2873-2881.	1.2	101
63	Hes genes and neurogenin regulate non-neural versus neural fate specification in the dorsal telencephalic midline. Development (Cambridge), 2008, 135, 2531-2541.	1.2	178
64	Possible involvement of SINEs in mammalian-specific brain formation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4220-4225.	3.3	177
65	Prdm Proto-Oncogene Transcription Factor Family Expression and Interaction with the Notch-Hes Pathway in Mouse Neurogenesis. PLoS ONE, 2008, 3, e3859.	1.1	113
66	Subcortical and Neocortical Guidance of Area-specific Thalamic Innervation. , 2006, , 42-53.		1
67	Fibroblast Growth Factor 8 Regulates Neocortical Guidance of Area-Specific Thalamic Innervation. Journal of Neuroscience, 2005, 25, 6550-6560.	1.7	100
68	Embryonic signaling centers expressing BMP, WNT and FGF proteins interact to pattern the cerebral cortex. Development (Cambridge), 2004, 131, 5639-5647.	1.2	266
69	Members of theWnt,Fz, andFrp gene families expressed in postnatal mouse cerebral cortex. Journal of Comparative Neurology, 2004, 473, 496-510.	0.9	131
70	Anti-tumor activity of antizyme which targets the ornithine decarboxylase (ODC) required for cell growth and transformation. Oncogene, 1999, 18, 165-172.	2.6	73
71	Enhancement of Helicase Activity and Increase of eIF-4E Phosphorylation in Ornithine Decarboxylase-Overproducing Cells. Biochemical and Biophysical Research Communications, 1996, 222, 748-752.	1.0	11
72	Spermidine Regulation of Protein Synthesis at the Level of Initiation Complex Formation of Met-tRNAi,mRNA and Ribosomes. Biochemical and Biophysical Research Communications, 1996, 223, 544-548.	1.0	23

#	Article	IF	CITATIONS
73	Inhibition of Cell Growth by Combination of α-Difluoromethylornithine and an Inhibitor of Spermine Synthase1. Journal of Biochemistry, 1995, 117, 824-829.	0.9	25