Marina Pinheiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5712797/publications.pdf

Version: 2024-02-01

64 papers

3,105 citations

257101 24 h-index 52 g-index

64 all docs

64 does citations

times ranked

64

4480 citing authors

#	Article	IF	CITATIONS
1	The Interleukin-1 (IL-1) Superfamily Cytokines and Their Single Nucleotide Polymorphisms (SNPs). Journal of Immunology Research, 2022, 2022, 1-25.	0.9	31
2	The burden of mental disorders, substance use disorders and self-harm among young people in Europe, 1990–2019: Findings from the Global Burden of Disease Study 2019. Lancet Regional Health - Europe, The, 2022, 16, 100341.	3.0	70
3	Epigallocatechin-3-Gallate Delivery in Lipid-Based Nanoparticles: Potentiality and Perspectives for Future Applications in Cancer Chemoprevention and Therapy. Frontiers in Pharmacology, 2022, 13, 809706.	1.6	8
4	MANAGEMENT OF THE UPPER LIMB ARTERIOVENOUS MALFORMATIONS , 2022, 29, 45-51.		1
5	Serine-based surfactants as effective antimicrobial agents against multiresistant bacteria. Biochimica Et Biophysica Acta - Biomembranes, 2022, , 183969.	1.4	2
6	The burden of injury in Central, Eastern, and Western European sub-region: a systematic analysis from the Global Burden of Disease 2019 Study. Archives of Public Health, 2022, 80, 142.	1.0	9
7	Lipid nanoparticles coated with chitosan using a one-step association method to target rifampicin to alveolar macrophages. Carbohydrate Polymers, 2021, 252, 116978.	5.1	19
8	Nanomedicine Interventions in Clinical Trials for the Treatment of Metastatic Breast Cancer. Applied Sciences (Switzerland), 2021, 11, 1624.	1.3	5
9	Hearing loss prevalence and years lived with disability, 1990–2019: findings from the Global Burden of Disease Study 2019. Lancet, The, 2021, 397, 996-1009.	6.3	358
10	Transferrin-functionalized lipid nanoparticles for curcumin brain delivery. Journal of Biotechnology, 2021, 331, 108-117.	1.9	40
11	Current Status of Amino Acid-Based Permeation Enhancers in Transdermal Drug Delivery. Membranes, 2021, 11, 343.	1.4	23
12	Gold nanostructures as mediators of hyperthermia therapies in breast cancer. Biochemical Pharmacology, 2021, 190, 114639.	2.0	17
13	Mitoxantrone-loaded lipid nanoparticles for breast cancer therapy – Quality-by-design approach and efficacy assessment in 2D and 3D in vitro cancer models. International Journal of Pharmaceutics, 2021, 607, 121044.	2.6	20
14	Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. The Lancet Healthy Longevity, 2021, 2, e580-e592.	2.0	277
15	Tuberculosis Vaccines: An Update of Recent and Ongoing Clinical Trials. Applied Sciences (Switzerland), 2021, 11, 9250.	1.3	16
16	Nanotechnology Innovations to Enhance the Therapeutic Efficacy of Quercetin. Nanomaterials, 2021, 11, 2658.	1.9	29
17	Special Issue on Drug–Membrane Interactions. Membranes, 2021, 11, 764.	1.4	2
18	Nanoparticles for Targeted Brain Drug Delivery: What Do We Know?. International Journal of Molecular Sciences, 2021, 22, 11654.	1.8	71

#	Article	IF	Citations
19	Insights into the Membranolytic Activity of Antimalarial Drug-Cell Penetrating Peptide Conjugates. Membranes, 2021, 11, 4.	1.4	4
20	Lipid nanoparticles biocompatibility and cellular uptake in a 3D human lung model. Nanomedicine, 2020, 15, 259-271.	1.7	15
21	Five insights from the Global Burden of Disease Study 2019. Lancet, The, 2020, 396, 1135-1159.	6.3	335
22	RVG29-Functionalized Lipid Nanoparticles for Quercetin Brain Delivery and Alzheimer's Disease. Pharmaceutical Research, 2020, 37, 139.	1.7	61
23	Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, The, 2020, 396, 1250-1284.	6.3	330
24	Optimization of Rifapentine-Loaded Lipid Nanoparticles Using a Quality-by-Design Strategy. Pharmaceutics, 2020, 12, 75.	2.0	11
25	Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer's disease. European Journal of Pharmaceutical Sciences, 2020, 148, 105314.	1.9	95
26	EGCG Mediated Targeting of Deregulated Signaling Pathways and Non-Coding RNAs in Different Cancers: Focus on JAK/STAT, Wnt/l²-Catenin, TGF/SMAD, NOTCH, SHH/GLI, and TRAIL Mediated Signaling Pathways. Cancers, 2020, 12, 951.	1.7	36
27	EGCG intestinal absorption and oral bioavailability enhancement using folic acid-functionalized nanostructured lipid carriers. Heliyon, 2019, 5, e02020.	1.4	31
28	Antituberculosis Drug Interactions with Membranes: A Biophysical Approach Applied to Bedaquiline. Membranes, 2019, 9, 141.	1.4	2
29	Antibiotic interactions using liposomes as model lipid membranes. Chemistry and Physics of Lipids, 2019, 222, 36-46.	1.5	23
30	Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 653-663.	1.9	59
31	Pseudomonas aeruginosa intensive care unit outbreak: winnowing of transmissions with molecular and genomic typing. Journal of Hospital Infection, 2018, 98, 282-288.	1.4	41
32	Effect of the alkyl group in the piperazine N-substitution on the therapeutic action of rifamycins: A drug-membrane interaction study. Chemico-Biological Interactions, 2018, 289, 75-80.	1.7	8
33	Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. International Journal of Pharmaceutics, 2018, 536, 478-485.	2.6	101
34	Acylation of the S413-PV cell-penetrating peptide as a means of enhancing its capacity to mediate nucleic acid delivery: Relevance of peptide/lipid interactions. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2619-2634.	1.4	9
35	New Approaches from Nanomedicine and Pulmonary Drug Delivery for the Treatment of Tuberculosis. , 2018, , 197-234.		1
36	Folate-targeted nanostructured lipid carriers for enhanced oral delivery of epigallocatechin-3-gallate. Food Chemistry, 2017, 237, 803-810.	4.2	40

#	Article	IF	CITATIONS
37	Targeted macrophages delivery of rifampicin-loaded lipid nanoparticles to improve tuberculosis treatment. Nanomedicine, 2017, 12, 2721-2736.	1.7	60
38	Effects of novel triple-stage antimalarial ionic liquids on lipid membrane models. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4190-4193.	1.0	21
39	Therapeutic Potential of Epigallocatechin Gallate Nanodelivery Systems. BioMed Research International, 2017, 2017, 1-15.	0.9	112
40	Oral Administration of Nanoparticles-Based TB Drugs. , 2017, , 307-326.		3
41	Treatment of Francisella infections via PLGA- and lipid-based nanoparticle delivery of antibiotics in a zebrafish model. Diseases of Aquatic Organisms, 2017, 125, 19-29.	0.5	6
42	Design, development, and characterization of lipid nanocarriers-based epigallocatechin gallate delivery system for preventive and therapeutic supplementation. Drug Design, Development and Therapy, 2016, Volume 10, 3519-3528.	2.0	47
43	Epigallocatechin Gallate Nanodelivery Systems for Cancer Therapy. Nutrients, 2016, 8, 307.	1.7	105
44	Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis. Drug Design, Development and Therapy, 2016, Volume 10, 2467-2475.	2.0	77
45	Design and statistical modeling of mannose-decorated dapsone-containing nanoparticles as a strategy of targeting intestinal M-cells. International Journal of Nanomedicine, 2016, 11, 2601.	3.3	29
46	The formulation of nanomedicines for treating tuberculosis. Advanced Drug Delivery Reviews, 2016, 102, 102-115.	6.6	83
47	Treatment of Francisella Infections for Aquaculture using PLGA- and Lipid-based 2Nanoparticle Delivery of Antibiotics in a Zebrafish Model. Journal of Aquaculture Research & Development, 2016, 07,	0.4	0
48	Molecular interactions of rifabutin with membrane under acidic conditions. International Journal of Pharmaceutics, 2015, 479, 63-69.	2.6	4
49	Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1139-1146.	1.4	25
50	A 17-mer Membrane-Active MSI-78 Derivative with Improved Selectivity toward Bacterial Cells. Molecular Pharmaceutics, 2015, 12, 2904-2911.	2.3	22
51	The lanthipeptides of Bacillus methylotrophicus and their association with genomic islands. Systematic and Applied Microbiology, 2015, 38, 525-533.	1.2	10
52	Evaluation of the effect of rifampicin on the biophysical properties of the membranes: Significance for therapeutic and side effects. International Journal of Pharmaceutics, 2014, 466, 190-197.	2.6	14
53	Interactions of isoniazid with membrane models: Implications for drug mechanism of action. Chemistry and Physics of Lipids, 2014, 183, 184-190.	1.5	19
54	In Vitro Assessment of NSAIDs-Membrane Interactions: Significance for Pharmacological Actions. Pharmaceutical Research, 2013, 30, 2097-2107.	1.7	22

#	Article	IF	CITATIONS
55	Interactions of N′-acetyl-rifabutin and N′-butanoyl-rifabutin with lipid bilayers: A synchrotron X-ray study. International Journal of Pharmaceutics, 2013, 453, 560-568.	2.6	5
56	Drug–membrane interaction studies applied to N′-acetyl-rifabutin. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 597-603.	2.0	16
57	Differential Interactions of Rifabutin with Human and Bacterial Membranes: Implication for Its Therapeutic and Toxic Effects. Journal of Medicinal Chemistry, 2013, 56, 417-426.	2.9	29
58	The Influence of Rifabutin on Human and Bacterial Membrane Models: Implications for Its Mechanism of Action. Journal of Physical Chemistry B, 2013, 117, 6187-6193.	1.2	25
59	Effects of a novel antimycobacterial compound on the biophysical properties of a pulmonary surfactant model membrane. International Journal of Pharmaceutics, 2013, 450, 268-277.	2.6	23
60	Insights about \hat{l} ±-tocopherol and Trolox interaction with phosphatidylcholine monolayers under peroxidation conditions through Brewster angle microscopy. Colloids and Surfaces B: Biointerfaces, 2013, 111, 626-635.	2.5	12
61	Interplay of mycolic acids, antimycobacterial compounds and pulmonary surfactant membrane: A biophysical approach to disease. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 896-905.	1.4	21
62	Evaluation of the Structure–Activity Relationship of Rifabutin and Analogs: A Drug–Membrane Study. ChemPhysChem, 2013, 14, 2808-2816.	1.0	11
63	Molecular Interaction of Rifabutin on Model Lung Surfactant Monolayers. Journal of Physical Chemistry B, 2012, 116, 11635-11645.	1.2	13
64	Liposomes as drug delivery systems for the treatment of TB. Nanomedicine, 2011, 6, 1413-1428.	1.7	91