

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5712660/publications.pdf Version: 2024-02-01

ΟΙΔΝ

#	Article	IF	CITATIONS
1	Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates. Catalysis Science and Technology, 2014, 4, 1556.	4.1	222
2	lonic liquids tailored and confined by one-step assembly with mesoporous silica for boosting the catalytic conversion of CO ₂ into cyclic carbonates. Green Chemistry, 2018, 20, 3232-3241.	9.0	80
3	Boron-doped melamine-derived carbon nitrides tailored by ionic liquids for catalytic conversion of CO ₂ into cyclic carbonates. Green Chemistry, 2017, 19, 2957-2965.	9.0	77
4	lonic Liquids: The Synergistic Catalytic Effect in the Synthesis of Cyclic Carbonates. Catalysts, 2013, 3, 878-901.	3.5	63
5	lonic liquids with multiple active sites supported by SBA-15 for catalyzing conversion of CO2 into cyclic carbonates. Journal of CO2 Utilization, 2020, 39, 101162.	6.8	60
6	Polymeric ionic liquids tailored by different chain groups for the efficient conversion of CO ₂ into cyclic carbonates. Green Chemistry, 2019, 21, 2352-2361.	9.0	52
7	Tailoring Molecular Weight of Bioderived Polycarbonates via Bifunctional Ionic Liquids Catalysts under Metal-Free Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 2684-2693.	6.7	51
8	Transesterification of Isosorbide with Dimethyl Carbonate Catalyzed by Task‧pecific Ionic Liquids. ChemSusChem, 2019, 12, 1169-1178.	6.8	41
9	Hydrogen bond donor functionalized poly(ionic liquid)s for efficient synergistic conversion of CO ₂ to cyclic carbonates. Physical Chemistry Chemical Physics, 2021, 23, 2005-2014.	2.8	37
10	Synthesis of Cyclic Carbonate Catalyzed by DBU Derived Basic Ionic Liquids. Chinese Journal of Chemistry, 2018, 36, 293-298.	4.9	31
11	Synthesis of bioderived polycarbonates with adjustable molecular weights catalyzed by phenolic-derived ionic liquids. Green Chemistry, 2020, 22, 2488-2497.	9.0	27
12	Efficient synthesis of bio-derived polycarbonates from dimethyl carbonate and isosorbide: regulating <i>exo</i> -OH and <i>endo</i> -OH reactivity by ionic liquids. Green Chemistry, 2020, 22, 5357-5368.	9.0	26
13	Structures, formation mechanisms, and ion-exchange properties of α-, β-, and γ-Na ₂ TiO ₃ . RSC Advances, 2016, 6, 112625-112633.	3.6	21
14	Poly(ionic liquid) materials tailored by carboxyl groups for the gas phase-conversion of epoxide and CO2 into cyclic carbonates. Journal of CO2 Utilization, 2022, 60, 101976.	6.8	20
15	Effects of imidazolium-based ionic liquids on the isobaric vapor–liquid equilibria of methanol + dimethyl carbonate azeotropic systems. Chinese Journal of Chemical Engineering, 2020, 28, 766-776.	3.5	16
16	Highly synergistic effect of ionic liquids and Zn-based catalysts for synthesis of cyclic carbonates from urea and diols. Journal of Molecular Liquids, 2020, 316, 113883.	4.9	16
17	Theoretical Insights into the Effect of Cations, Anions, and Water on Fixation of CO ₂ Catalyzed by Different Ionic Liquids. ChemSusChem, 2020, 13, 6391-6400.	6.8	13
18	Regulation of Novel Multiâ€Center Ionic Liquids for Synergetically Catalyzing CO ₂ Conversion into Cyclic Carbonates. ChemistrySelect, 2021, 6, 6380-6387.	1.5	8

Qian

#	Article	IF	CITATIONS
19	Polymeric Ionic Liquid Grafted on Silica for Efficient Conversion of CO2 into Cyclic Carbonates. Catalysis Letters, 2019, 149, 2647-2655.	2.6	7
20	Reaction Behaviors and Mechanism of Isobutane/Propene Alkylation Catalyzed by Composite Ionic Liquid. Industrial & Engineering Chemistry Research, 2022, 61, 8624-8633.	3.7	7
21	Sterically controlling 2-carboxylated imidazolium salts for one-step efficient hydration of epoxides into 1,2-diols. Green Chemistry, 2021, 23, 2992-3000.	9.0	5