
Kayla F Goliwas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5712566/publications.pdf Version: 2024-02-01

KAVIA E COLINAAS

#	Article	IF	CITATIONS
1	Ex Vivo Culture Models of Hidradenitis Suppurativa for Defining Molecular Pathogenesis and Treatment Efficacy of Novel Drugs. Inflammation, 2022, 45, 1388-1401.	3.8	2
2	Moving immune therapy forward targeting tme. Physiological Reviews, 2021, 101, 417-425.	28.8	62
3	Computational Simulation of Exosome Transport in Tumor Microenvironment. Frontiers in Medicine, 2021, 8, 643793.	2.6	7
4	Extracellular Vesicle Mediated Tumor-Stromal Crosstalk Within an Engineered Lung Cancer Model. Frontiers in Oncology, 2021, 11, 654922.	2.8	8
5	Sphingolipids in Lung Pathology in the Coronavirus Disease Era: A Review of Sphingolipid Involvement in the Pathogenesis of Lung Damage. Frontiers in Physiology, 2021, 12, 760638.	2.8	13
6	Ex Vivo Modeling of Human Neuroendocrine Tumors in Tissue Surrogates. Frontiers in Endocrinology, 2021, 12, 710009.	3.5	5
7	Extracellular Vesicles: Bidirectional Accelerators of Cellular Senescence in Fibrosis?. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 547-548.	2.9	3
8	Mechanical strain induces phenotypic changes in breast cancer cells and promotes immunosuppression in the tumor microenvironment. Laboratory Investigation, 2020, 100, 1503-1516.	3.7	27
9	Flow-perfusion bioreactor system for engineered breast cancer surrogates to be used in preclinical testing. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1242-1250.	2.7	17
10	Methods to Evaluate Cell Growth, Viability, and Response to Treatment in a Tissue Engineered Breast Cancer Model. Scientific Reports, 2017, 7, 14167.	3.3	34
11	Abstract A05: Evaluation ofin vitrothree dimensional breast cancer surrogates using histologic morphology and non-invasive imaging to monitor growth and viability throughout culture. , 2017, , .		0
12	Preparation and Analysis of In Vitro Three Dimensional Breast Carcinoma Surrogates. Journal of Visualized Experiments, 2016, , .	0.3	5
13	A recapitulative three-dimensional model of breast carcinoma requires perfusion for multi-week growth. Journal of Tissue Engineering, 2016, 7, 204173141666073.	5.5	8
14	The presence of primary cilia in cancer cells does not predict responsiveness to modulation of smoothened activity. International Journal of Oncology, 2015, 47, 269-279.	3.3	3
15	Abstract 331: A novel perfusion bioreactor system maintains long-term viability of a three dimensional in vitro breast carcinoma surrogate. , 2015, , .		0
16	Abstract 2022: Importance of ECM and media permeation in 3D modeling of breast cancer. , 2014, , .		0