Narendar Nasani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5712506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on sintering technology of proton conducting BaCeO3-BaZrO3 perovskite oxide materials for Protonic Ceramic Fuel Cells. Journal of Power Sources, 2019, 438, 226991.	4.0	100
2	Evolution of reduced Ti containing phase(s) in MgH 2 /TiO 2 system and its effect on the hydrogen storage behavior of MgH 2. Journal of Power Sources, 2017, 362, 174-183.	4.0	83
3	Fabrication and electrochemical performance of a stable, anode supported thin BaCe0.4Zr0.4Y0.2O3-δ electrolyte Protonic Ceramic Fuel Cell. Journal of Power Sources, 2015, 278, 582-589.	4.0	73
4	Synthesis and conductivity of Ba(Ce,Zr,Y)O3â~δ electrolytes forÂPCFCs by new nitrate-free combustion method. International Journal of Hydrogen Energy, 2013, 38, 8461-8470.	3.8	55
5	Role of chemical interaction between MgH 2 and TiO 2 additive on the hydrogen storage behavior of MgH 2. Applied Surface Science, 2017, 420, 740-745.	3.1	49
6	The importance of phase purity in Ni–BaZr _{0.85} Y _{0.15} O _{3â~Î′} cermet anodes – novel nitrate-free combustion route and electrochemical study. RSC Advances, 2013, 3, 859-869.	1.7	43
7	Copper-catalyzed C–N coupling reactions of aryl halides with α-amino acids under focused microwave irradiation. Tetrahedron Letters, 2009, 50, 5159-5161.	0.7	32
8	The impact of porosity, pH 2 and pH 2 O on the polarisation resistance of Ni–BaZr 0.85 Y 0.15 O 3â~ໍໂ cermet anodes for Protonic Ceramic Fuel Cells (PCFCs). International Journal of Hydrogen Energy, 2014, 39, 21231-21241.	3.8	32
9	Conductivity recovery by redox cycling of yttrium doped barium zirconate proton conductors and exsolution of Ni-based sintering additives. Journal of Power Sources, 2017, 339, 93-102.	4.0	30
10	Chemically transformed additive phases in Mg2TiO4 and MgTiO3 loaded hydrogen storage system MgH2. Applied Surface Science, 2019, 472, 99-104.	3.1	29
11	Exploring the impact of sintering additives on the densification and conductivity of BaCe0.3Zr0.55Y0.15O3-Ĩ´electrolyte for protonic ceramic fuel cells. Journal of Alloys and Compounds, 2021, 862, 158640.	2.8	29
12	Formation of Mg _x Nb _y O _{x+y} through the Mechanochemical Reaction of MgH ₂ and Nb ₂ O ₅ , and Its Effect on the Hydrogen‣torage Behavior of MgH ₂ . ChemPhysChem, 2016, 17, 178-183.	1.0	28
13	Structural, optical, thermal, mechanical and dielectric studies of Sulfamic acid single crystals: An influence of dysprosium (Dy3+) doping. Journal of Molecular Structure, 2016, 1119, 365-372.	1.8	27
14	Local mechanical and electromechanical properties of the P(VDF-TrFE)-graphene oxide thin films. Applied Surface Science, 2017, 421, 42-51.	3.1	27
15	Electrochemical behaviour of Ni-BZO and Ni-BZY cermet anodes for Protonic Ceramic Fuel Cells (PCFCs) – A comparative study. Electrochimica Acta, 2015, 154, 387-396.	2.6	26
16	Modeling of electrical conductivity in the proton conductor Ba0.85K0.15ZrO3â~δ. Electrochimica Acta, 2015, 165, 443-449.	2.6	24
17	Chemical transformation of additive phase in MgH2/CeO2 hydrogen storage system and its effect on catalytic performance. Applied Surface Science, 2021, 561, 150062.	3.1	23
18	lonic Conductivity of Na ₃ Al ₂ P ₃ O ₁₂ Glass Electrolytes—Role of Charge Compensators. Inorganic Chemistry, 2021, 60, 12893-12905.	1.9	20

NARENDAR NASANI

#	Article	IF	CITATIONS
19	Dehydrogenation Properties of Magnesium Hydride Loaded with Fe, Feâ^'C, and Feâ^'Mg Additives. ChemPhysChem, 2017, 18, 287-291.	1.0	16
20	In-situ redox cycling behaviour of Ni–BaZr0.85Y0.15O3â^îŕ cermet anodes for Protonic Ceramic Fuel Cells. International Journal of Hydrogen Energy, 2014, 39, 19780-19788.	3.8	15
21	Two step mechanochemical synthesis of Nb doped MgO rock salt nanoparticles and its application for hydrogen storage in MgH2. International Journal of Hydrogen Energy, 2016, 41, 11716-11722.	3.8	15
22	Increased performance by use of a mixed conducting buffer layer, terbia-doped ceria, for Nd2NiO4+δ SOFC/SOEC oxygen electrodes. International Journal of Hydrogen Energy, 2019, 44, 31466-31474.	3.8	14
23	Enhancing electrochemical performance by control of transport properties in buffer layers – solid oxide fuel/electrolyser cells. Physical Chemistry Chemical Physics, 2015, 17, 11527-11539.	1.3	13
24	Mechanochemical processing of BaZr1â^'YyO3â^' (yÂ=Â0.15, 0.20) protonic ceramic electrolytes: Phase purity, microstructure, electrical properties and comparison with other preparation routes. International Journal of Hydrogen Energy, 2021, 46, 13606-13621.	3.8	12
25	Exploring the mixed transport properties of sulfur(<scp>vi</scp>)-doped Ba ₂ In ₂ O ₅ for intermediate-temperature electrochemical applications. Journal of Materials Chemistry A, 2016, 4, 11069-11076.	5.2	9
26	Non-aqueous stabilized suspensions of BaZr0.85Y0.15O3â~δ proton conducting electrolyte powders for thin film preparation. Journal of the European Ceramic Society, 2013, 33, 1833-1840.	2.8	8
27	Structural and electrical properties of strontium substituted Y2BaNiO5. Journal of Alloys and Compounds, 2015, 620, 91-96.	2.8	8
28	Exploring the Thermoelectric Performance of BaGd ₂ NiO ₅ Haldane Gap Materials. Inorganic Chemistry, 2017, 56, 2354-2362.	1.9	6
29	Influence of NaF on the ionic conductivity of sodium aluminophosphate glass electrolytes. Materials Letters, 2020, 271, 127763.	1.3	6
30	Comparative study of fluorite-type ceria-based Ce1â^'x Ln x O2â^'δ (LnÂ=ÂTb, Gd, and Pr) mixed ionic electronic conductors densified at low temperatures. Journal of Materials Science, 2016, 51, 10293-10300.	1.7	5
31	Solid solution limits and electrical properties of scheelite SryLa1-yNb1-xVxO4-δ materials for x = 0.25 and 0.30 as potential proton conducting ceramic electrolytes. International Journal of Hydrogen Energy, 2018, 43, 18682-18690.	3.8	5
32	Metal Oxide Additives Incorporated Hydrogen Storage Systems: Formation of In Situ Catalysts and Mechanistic Understanding. Environmental Chemistry for A Sustainable World, 2019, , 215-245.	0.3	2
33	Unravelling the Effects of Calcium Substitution in BaGd ₂ CoO ₅ Haldane Gap 1D Material and Its Thermoelectric Performance. Journal of Physical Chemistry C, 2020, 124, 13017-13025.	1.5	2
34	The effect of nickel doping on the microstructure and conductivity of Ca(Ti,Al)O 3–δ for solid oxide fuel cells. Journal of the American Ceramic Society, 2021, 104, 5689-5697.	1.9	2