Giovanni Marletta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5712223/publications.pdf

Version: 2024-02-01

170 papers 4,299 citations

36 h-index 53 g-index

175 all docs

175 docs citations

175 times ranked 5350 citing authors

#	Article	IF	CITATIONS
1	Chemical reactions and physical property modifications induced by keV ion beams in polymers. Nuclear Instruments & Methods in Physics Research B, 1990, 46, 295-305.	0.6	237
2	Cations as Switches of Amyloid-Mediated Membrane Disruption Mechanisms: Calcium and IAPP. Biophysical Journal, 2013, 104, 173-184.	0.2	103
3	Human bone marrow stromal cells: In vitro expansion and differentiation for bone engineering. Biomaterials, 2006, 27, 6150-6160.	5.7	97
4	Improved cell adhesion to ion beam-irradiated polymer surfaces. Biomaterials, 1997, 18, 1461-1470.	5.7	94
5	Supramolecular Complexes of Conjugated Polyelectrolytes with Poly(ethylene oxide): Multifunctional Luminescent Semiconductors Exhibiting Electronic and Ionic Transport. Advanced Materials, 2005, 17, 2659-2663.	11.1	91
6	Esca and reels characterization of electrically conductive polyimide obtained by ion bombardment in the keV range. Surface and Interface Analysis, 1988, 12, 447-454.	0.8	90
7	Electric-Field-Assisted Alignment of Supramolecular Fibers. Advanced Materials, 2006, 18, 1276-1280.	11.1	90
8	Design and Production of a Chimeric Resilin-, Elastin-, and Collagen-Like Engineered Polypeptide. Biomacromolecules, 2011, 12, 2957-2965.	2.6	90
9	Chemical reactions induced in polymers by keV ions, electrons and photons. Surface and Interface Analysis, 1990, 16, 407-411.	0.8	86
10	Functionalization of Oxide Surfaces by Terpyridine Phosphonate Ligands: Surface Reactions and Anchoring Geometry. Langmuir, 2010, 26, 8400-8406.	1.6	86
11	Improved osteogenic differentiation of human marrow stromal cells cultured on ion-induced chemically structured poly-ε-caprolactone. Biomaterials, 2007, 28, 1132-1140.	5.7	7 5
12	Preventing Corona Effects: Multiphosphonic Acid Poly(ethylene glycol) Copolymers for Stable Stealth Iron Oxide Nanoparticles. Biomacromolecules, 2014, 15, 3171-3179.	2.6	71
13	The effect of irradiation modification and RGD sequence adsorption on the response of human osteoblasts to polycaprolactone. Biomaterials, 2005, 26, 4793-4804.	5.7	69
14	Growth morphology of nanoscale sputter-deposited Au films on amorphous soft polymeric substrates. Applied Physics A: Materials Science and Processing, 2011, 103, 939-949.	1.1	68
15	Surface Chemical Structure and Cell Adhesion onto Ion Beam Modified Polysiloxane. Langmuir, 2001, 17, 2243-2250.	1.6	65
16	A multitechnique study of preferential protein adsorption on hydrophobic and hydrophilic plasma-modified polymer surfaces. Colloids and Surfaces B: Biointerfaces, 2009, 70, 76-83.	2.5	54
17	Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential. Materials Science and Engineering C, 2015, 48, 337-346.	3.8	54
18	Molecular Modeling of Interactions betweenl-Lysine and a Hydroxylated Quartz Surface. Journal of Physical Chemistry B, 2004, 108, 2600-2607.	1.2	51

#	Article	IF	CITATIONS
19	Developing Langmuir–Blodgett strategies towards practical devices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 169, 43-48.	1.7	49
20	Enhancement of fibroblastic proliferation on chitosan surfaces by immobilized epidermal growth factor. Acta Biomaterialia, 2008, 4, 989-996.	4.1	47
21	X-ray, electron, and ion beam induced modifications of poly(ether sulfone). Macromolecules, 1991, 24, 99-105.	2.2	45
22	Evaluation of L929 fibroblast attachment and proliferation on Arg-Gly-Asp-Ser (RGDS)-immobilized chitosan in serum-containing/serum-free cultures. Journal of Bioscience and Bioengineering, 2007, 104, 69-77.	1.1	45
23	Surface free energy and cell attachment onto ion-beam irradiated polymer surfaces. Nuclear Instruments & Methods in Physics Research B, 2003, 208, 287-293.	0.6	43
24	SPM and TOF-SIMS investigation of the physical and chemical modification induced by tip writing of self-assembled monolayers. Materials Science and Engineering C, 2003, 23, 7-12.	3.8	42
25	Differential Cultured Fibroblast Behavior on Plasma and Ion-Beam-Modified Polysiloxane Surfaces. Langmuir, 2002, 18, 9469-9475.	1.6	41
26	Atomic force microscopy investigation of the kinetic growth mechanisms of sputtered nanostructured Au film on mica: towards a nanoscale morphology control. Nanoscale Research Letters, 2011, 6, 112.	3.1	41
27	Mechanisms underlying the attachment and spreading of human osteoblasts: From transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces. Acta Biomaterialia, 2013, 9, 6105-6115.	4.1	41
28	Ion beam induced reduction of metallic cations in yttria-zirconia. Nuclear Instruments & Methods in Physics Research B, 1996, 116, 440-446.	0.6	40
29	Expression of cell adhesion receptors in human osteoblasts cultured on biofunctionalized poly-(ε-caprolactone) surfaces. Biomaterials, 2007, 28, 3668-3678.	5.7	40
30	Correlation between the modification of the chemical structure and the electrical properties of Ar-ion bombarded polyimide. Nuclear Instruments & Methods in Physics Research B, 1989, 39, 792-795.	0.6	38
31	Structural modifications and electrical properties in ion-irradiated polyimide. Nuclear Instruments & Methods in Physics Research B, 1999, 151, 101-108.	0.6	38
32	Selfâ€Assembling Pathway of HiApp Fibrils within Lipid Bilayers. ChemBioChem, 2010, 11, 1856-1859.	1.3	38
33	Effects of the embedding kinetics on the surface nano-morphology of nano-grained Au and Ag films on PS and PMMA layers annealed above the glass transition temperature. Applied Physics A: Materials Science and Processing, 2012, 107, 669-683.	1.1	38
34	Tensile properties, thermal and morphological analysis of thermoplastic polyurethane films reinforced with multiwalled carbon nanotubes. European Polymer Journal, 2013, 49, 3155-3164.	2.6	38
35	Single-step label-free hepatitis B virus detection by a piezoelectric biosensor. RSC Advances, 2015, 5, 38152-38158.	1.7	38
36	Bacterial adhesion onto nanopatterned polymer surfaces. Materials Science and Engineering C, 2006, 26, 942-946.	3.8	37

#	Article	IF	CITATIONS
37	How the Surface Nanostructure of Polyethylene Affects Protein Assembly and Orientation. ACS Nano, 2011, 5, 3120-3131.	7.3	37
38	Kinetic growth mechanisms of sputter-deposited Au films on mica: from nanoclusters to nanostructured microclusters. Applied Physics A: Materials Science and Processing, 2010, 100, 7-13.	1.1	36
39	Particle beam-induced reactions versus thermal degradation in PMDA-ODA polyimide. Macromolecules, 1992, 25, 3190-3198.	2.2	34
40	Enhanced crystallinity and film retention of P3HT thin-films for efficient organic solar cells by use of preformed nanofibers in solution. Journal of Materials Chemistry C, 2013, 1, 7748.	2.7	34
41	Chemical and Physical Property Modifications Induced by Ion Irradiation in Polymers., 1995,, 597-640.		34
42	Electrospun Scaffolds for Osteoblast Cells: Peptide-Induced Concentration-Dependent Improvements of Polycaprolactone. PLoS ONE, 2015, 10, e0137505.	1.1	32
43	Design of Decorated Self-Assembling Peptide Hydrogels as Architecture for Mesenchymal Stem Cells. Materials, 2016, 9, 727.	1.3	32
44	Probing the Cleaning of Polymeric Coatings by Nanostructured Fluids: A QCM-D Study. Langmuir, 2017, 33, 5675-5684.	1.6	31
45	Reflection electron energy loss spectroscopy (REELS) of conductive polymers obtained by keV bombardment. Nuclear Instruments & Methods in Physics Research B, 1989, 39, 773-777.	0.6	29
46	Surface characteristics of ionically crosslinked chitosan membranes. Journal of Applied Polymer Science, 2007, 106, 3884-3888.	1.3	28
47	Oxygen plasmaâ€induced conversion of polysiloxane into hydrophilic and smooth SiO _{<i>x</i>} surfaces. Surface and Interface Analysis, 2008, 40, 649-656.	0.8	28
48	Fibronectin Conformation Switch Induced by Coadsorption with Human Serum Albumin. Langmuir, 2011, 27, 312-319.	1.6	28
49	Characterization of Wet Powder-Sprayed Zirconia/Calcium Phosphate Coating for Dental Implants. Clinical Implant Dentistry and Related Research, 2015, 17, 186-198.	1.6	28
50	Densely-packed self-assembled monolayers on gold surfaces from a conformationally constrained helical hexapeptide. Surface Science, 2006, 600, 409-416.	0.8	27
51	Molecular Modeling of Interactions betweenl-Lysine and Functionalized Quartz Surfaces. Journal of Physical Chemistry B, 2006, 110, 4836-4845.	1,2	26
52	Laminin Adsorption on Nanostructures: Switching the Molecular Orientation by Local Curvature Changes. Langmuir, 2013, 29, 8335-8342.	1.6	26
53	Energy deposition mechanisms and radiation induced reactions in PMDA-ODA polyimide. Nuclear Instruments & Methods in Physics Research B, 1992, 65, 50-54.	0.6	25
54	X-ray photoelectron spectroscopy study of bombardment-induced compositional changes in ZrO2, SiO2, and ZrSiO4. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 2771-2778.	0.9	25

#	Article	IF	CITATIONS
55	Crystalline Monolayer Ordering at Substrate/Polymer Interfaces in Poly(3â€hexylthiophene) Ultrathin Films. Macromolecular Chemistry and Physics, 2011, 212, 905-914.	1.1	25
56	Serum Protein-Resistant Behavior of Multisite-Bound Poly(ethylene glycol) Chains on Iron Oxide Surfaces. ACS Omega, 2017, 2, 1309-1320.	1.6	25
57	3D Synthetic Peptide-based Architectures for the Engineering of the Enteric Nervous System. Scientific Reports, 2019, 9, 5583.	1.6	25
58	Ion beam induced chemical effects in organosilicon polymers. Nuclear Instruments & Methods in Physics Research B, 1996, 116, 299-304.	0.6	24
59	Fluorescent Quantum Dots Make Feasible Long-Range Transmission of Molecular Bits. Journal of Physical Chemistry Letters, 2017, 8, 3861-3866.	2.1	24
60	Reflection electron energy loss spectroscopy of keV bombarded polystyrene at high ion fluences. Nuclear Instruments & Methods in Physics Research B, 1989, 37-38, 712-715.	0.6	23
61	Interfacial reactions in polyimide/metal systems. Journal of Materials Research, 1991, 6, 861-870.	1.2	23
62	Adhesion properties on nanometric scale of silicon oxide and silicon nitride surfaces modified by 1-octadecene. Surface and Interface Analysis, 2002, 33, 54-58.	0.8	23
63	Oxygen depletion in electron beam bombarded glass surfaces studied by XPS. Journal of Non-Crystalline Solids, 1983, 55, 433-442.	1.5	22
64	Cell adhesion on low-energy ion beam-irradiated polysiloxane surfaces. Nuclear Instruments & Methods in Physics Research B, 1999, 148, 1079-1084.	0.6	22
65	Dynamic scanning force microscopy investigation of nanostructured spiral-like domains in LangmuirÂBlodgett monolayers. Nanotechnology, 2003, 14, 245-249.	1.3	22
66	Patterning of lactoferrin using functional SAMs of iron complexes. Chemical Communications, 2007, , 2621.	2.2	22
67	Interfacial Free Energy Driven Nanophase Separation in Poly(3-hexylthiophene)/[6,6]-Phenyl-C61-butyric Acid Methyl Ester Thin Films. Langmuir, 2012, 28, 5257-5266.	1.6	22
68	Hyaluronan-based pericellular matrix: substrate electrostatic charges and early cell adhesion events. , 2013, 26, 133-149.		22
69	Na-surface segregation and oxygen depletion in particle bombardment of alkaline glasses. Nuclear Instruments & Methods in Physics Research B, 1988, 32, 283-287.	0.6	21
70	Fast exopolysaccharide secretion of Pseudomonas aeruginosa on polar polymer surfaces. Journal of Colloid and Interface Science, 2005, 289, 386-393.	5.0	21
71	Chemical selectivity and energy transfer mechanisms in the radiation-induced modification of polyethersulphone. Nuclear Instruments & Methods in Physics Research B, 1996, 116, 246-252.	0.6	20
72	Adsorption-induced conformational transition in 2,2′-bipyridine on silver surfaces: a surface-enhanced Raman scattering study. Journal of Raman Spectroscopy, 1999, 30, 1067-1071.	1.2	20

#	Article	IF	Citations
73	Self-Organizing Fiberlike Nanostructures and Wrapping-Up Processes in Langmuirâ-'Blodgett Films. Langmuir, 2003, 19, 5912-5917.	1.6	20
74	Cell adhesion and spreading on polymer surfaces micropatterned by ion beams. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1145-1151.	0.9	20
75	Pericyte adhesion and growth onto polyhydroxymethylsiloxane surfaces nanostructured by plasma treatment and ion irradiation. Microvascular Research, 2004, 68, 209-220.	1.1	20
76	Theoretical and Experimental Study on a Self-Assembling Polysaccharide Forming Nanochannels: Static and Dynamic Effects Induced by a <i>Soft</i> Confinement. Journal of Physical Chemistry B, 2008, 112, 6473-6483.	1.2	20
77	Memory effects in annealed hybrid gold nanoparticles/block copolymer bilayers. Nanoscale Research Letters, 2011, 6, 167.	3.1	20
78	Enzyme-assisted calcium phosphate biomineralization on an inert alumina surface. Acta Biomaterialia, 2015, 13, 335-343.	4.1	20
79	Reactions induced by ion bombardment of solid cyclohexane at 77 K. Chemical Physics, 1983, 75, 417-423.	0.9	19
80	Electronic excitations in solid ZrO2 from reflection EELS and ESCA multipeak structures. Chemical Physics Letters, 1986, 124, 414-419.	1.2	19
81	Hydrogenated amorphous carbon synthesis by ion beam irradiation. Applied Surface Science, 1989, 43, 228-231.	3.1	19
82	Particle-beam treatment of organosilicon gas separation membranes: A novel way of controlling their mass transport properties. Journal of Applied Polymer Science, 1996, 60, 1883-1889.	1.3	19
83	Optical properties of ceramic-like layers obtained by low energy ion beam irradiation of polysiloxane films. Nuclear Instruments & Methods in Physics Research B, 1998, 141, 684-692.	0.6	19
84	Study of albumin adsorption on ion beam irradiated polymer surfaces. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 782-787.	0.6	19
85	Driving hâ€osteoblast adhesion and proliferation on titania: peptide hydrogels decorated with growth factors and adhesive conjugates. Journal of Peptide Science, 2014, 20, 585-594.	0.8	19
86	Effects of ionizations and displacements on the hardness and optical absorption of some ion irradiated polymers. Nuclear Instruments & Methods in Physics Research B, 1995, 105, 192-196.	0.6	18
87	Comparison between angular dependent NEXAFS analysis and theoretical calculations of molecular orientation of new functional mixed aromatic molecules deposited onto $Au/Si(111)$. Nuclear Instruments & Methods in Physics Research B, 2006, 246, 145-150.	0.6	18
88	Self-assembled peptide monolayers on interdigitated gold microelectrodes. Materials Science and Engineering C, 2007, 27, 1309-1312.	3.8	18
89	Coadsorption-dependent orientation of fibronectin epitopes at hydrophilic gold surfaces. Soft Matter, 2012, 8, 8370.	1.2	18
90	Multiscale characterization of a chimeric biomimetic polypeptide for stem cell culture. Bioinspiration and Biomimetics, 2012, 7, 046007.	1.5	18

#	Article	IF	CITATIONS
91	Structure–Rheology Relationship in Weakly Amphiphilic Block Copolymer Langmuir Monolayers. Langmuir, 2014, 30, 3345-3353.	1.6	18
92	XPS investigation of the effects induced by the silanization on real glass surfaces. Journal of Non-Crystalline Solids, 1984, 68, 219-230.	1.5	17
93	Heat-induced versus particle-beam-induced chemistry in polyimide. Nuclear Instruments & Methods in Physics Research B, 1993, 80-81, 1045-1049.	0.6	17
94	Title is missing!. Journal of Materials Science Letters, 2001, 20, 663-665.	0.5	17
95	Impact of selective fibronectin nanoconfinement on human dental pulp stem cells. Colloids and Surfaces B: Biointerfaces, 2014, 123, 39-48.	2.5	17
96	Reactive messengers for digital molecular communication with variable transmitter–receiver distance. Physical Chemistry Chemical Physics, 2018, 20, 30312-30320.	1.3	17
97	Cation dependence of the chemical modifications induced by low energy particle bombardment on inorganic salts: An XPS study. Nuclear Instruments & Methods in Physics Research B, 1988, 32, 204-210.	0.6	16
98	Ion beam induced nanometric structure and oligopeptide adsorption on patterned polymer surfaces. Materials Science and Engineering C, 2003, 23, 779-786.	3.8	16
99	Langmuir–SchÃfer films of a new calix[4]pyrrole-based macrocycle exhibiting induced chirality upon binding with chiral alcohol vapours. New Journal of Chemistry, 2003, 27, 615.	1.4	16
100	Static and dynamic features of a helical hexapeptide chemisorbed on a gold surface. Materials Science and Engineering C, 2006, 26, 918-923.	3.8	16
101	Scanning force microscopy and optical spectroscopy of phase-segregated thin films of poly(9,9′-dioctylfluorene-alt-benzothiadiazole) and poly(ethylene oxide). Journal of Materials Chemistry, 2007, 17, 1387-1391.	6.7	16
102	Phase Segregation in Thin Films of Conjugated Polyrotaxane– Poly(ethylene oxide) Blends: A Scanning Force Microscopy Study. Advanced Functional Materials, 2007, 17, 927-932.	7.8	16
103	Aminofunctionalization and sub-micrometer patterning on silicon through silane doped agarose hydrogels. Journal of Materials Chemistry, 2009, 19, 5226.	6.7	16
104	Radiation-enhanced diffusion of Na in alkaline glasses. Journal of Non-Crystalline Solids, 1986, 83, 344-352.	1.5	15
105	Human serum albumin adsorption onto a-SiC:H and a-C:H thin films deposited by plasma enhanced chemical vapor deposition. New Biotechnology, 2002, 19, 85-90.	2.7	15
106	Molecular Modeling of Oligopeptide Adsorption onto Functionalized Quartz Surfaces. Journal of Physical Chemistry B, 2007, 111, 11237-11243.	1,2	15
107	ToF-SIMS investigation of FIB-patterning of lactoferrin by using self-assembled monolayers of iron complexes. Applied Surface Science, 2008, 255, 1075-1078.	3.1	15
108	Confined protein adsorption into nanopore arrays fabricated by colloidal-assisted polymer patterning. Chemical Communications, 2008, , 5031.	2.2	15

#	Article	IF	CITATIONS
109	Extended-Chain Induced Bulk Morphologies Occur at Surfaces of Thin Co-Oligomer Films. Macromolecules, 2012, 45, 4740-4748.	2.2	15
110	Novel pH responsive calix[8] arene hydrogelators: self-organization processes at a nanometric scale. Chemical Communications, 2013, 49, 2530.	2.2	15
111	Protein adsorption and fibroblast adhesion on irradiated polysiloxane surfaces. Journal of Materials Science: Materials in Medicine, 2003, 14, 663-670.	1.7	14
112	Viscoelastic properties of insoluble amphiphiles at the air/water interface. Journal of Colloid and Interface Science, 2006, 296, 269-275.	5.0	14
113	Relationship between the fibroblastic behaviour and surface properties of RGD-immobilized PCL membranes. Journal of Materials Science: Materials in Medicine, 2007, 18, 317-319.	1.7	14
114	Optical properties from reflection electron energy loss spectroscopy. Thin Solid Films, 1992, 207, 313-318.	0.8	13
115	Spectroscopic evidence for adsorption-induced polymerisation of terthiophene at silver surfaces. Physical Chemistry Chemical Physics, 2000, 2, 5298-5301.	1.3	13
116	High-energy ion-beam-induced modification of the optical properties of polysiloxane films. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 772-777.	0.6	13
117	Temperature and pressure dependence of quercetin-3-O-palmitate interaction with a model phospholipid membrane: film balance and scanning probe microscopy study. Journal of Colloid and Interface Science, 2004, 271, 329-335.	5.0	13
118	Controlled Density Patterning of Tolylterpyridine-Tagged Oligonucleotides. Langmuir, 2011, 27, 8595-8599.	1.6	12
119	Patterning of templated-confined nanoscale Au films by thermal-induced dewetting process of a poly(methylmethacrylate) underlying layer. Journal of Applied Physics, 2012, 112, 124316.	1.1	12
120	Binary collisions inducing chemical reactions in 2 keV Ar+ sputtering of Zr and Ti phosphates. Chemical Physics, 1985, 97, 421-431.	0.9	11
121	Wear effects in retrieved acetabular UHMW-PE cups. Journal of Materials Science: Materials in Medicine, 1996, 7, 723-729.	1.7	11
122	XPS study of radiation-induced modification of poly(butene-1-sulfone): Dependence on the energy deposition mechanism. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 676-681.	0.6	11
123	Modification of gas separation membranes on a nanometric scale. Nuclear Instruments & Methods in Physics Research B, 1997, 122, 547-549.	0.6	10
124	Evaluation of Plasma Modified Polycaprolactone Honeycomb Scaffolds by Human Mesenchymal Stem Cells Cultured in Vitamin D Differentiation Medium. Plasma Processes and Polymers, 2010, 7, 794-801.	1.6	10
125	<i>In situ</i> structure and force characterization of 2D nano-colloids at the air/water interface. Soft Matter, 2019, 15, 8475-8482.	1.2	10
126	Structural study of meso-octaethylcalix[4]pyrrole Langmuir–Blodgett films used as gas sensors. Materials Science and Engineering C, 2002, 19, 27-31.	3.8	9

#	Article	IF	CITATIONS
127	From micro- to nanometric scale patterning by Langmuir–Blodgett technique. Materials Science and Engineering C, 2002, 22, 177-181.	3.8	9
128	Chemical imaging of self-assembling structures in Langmuir–Blodgett films of polymer blends. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 169, 49-54.	1.7	9
129	Chelating Surfaces for Native State Proteins Patterning: The Human Serum Albumin Case. ACS Applied Materials & Care and Case are also as a case and Case are a case are a case and Case are a case are a case and Case are a case are a case and Case are a case and Case are a case and Case are a case are a case and Case are a case are a case and Case are a case are a case are a case and Case are a case and Case are a case and Case are a case are a case are a case are a case and Case are a case are a case are a case are a case and Case are a case are a case are a case are a case and Case are a case are a case are a case are a case and Case are a case are	4.0	9
130	He+ and Ar+ bombardment induced chemical changes in Crî—,Oî—,Si layers. Nuclear Instruments & Methods in Physics Research B, 1996, 116, 200-206.	0.6	8
131	Thermoresponsive and bioactive poly(vinyl ether)-based hydrogels synthesized by radiation copolymerization and photochemical immobilization. Radiation Physics and Chemistry, 2008, 77, 154-161.	1.4	8
132	UV-O3-treated and protein-coated polymer surfaces facilitate endothelial cell adhesion and proliferation mediated by the PKCî±/ERK/cPLA2 pathway. Microvascular Research, 2008, 75, 330-342.	1.1	8
133	Polymer/metal hybrid multilayers modified Schottky devices. Applied Physics Letters, 2013, 103, 193117.	1.5	8
134	Ion-Beam Modification of Polymer Surfaces for Biological Applications. Topics in Applied Physics, 2009, , 345-369.	0.4	8
135	Effect of ion bombardment on Crî—,Siî—,O layers: an X-ray photoelectron spectroscopic study. Thin Solid Films, 1994, 241, 211-217.	0.8	7
136	Orienting proteins by nanostructured surfaces: evidence of a curvature-driven geometrical resonance. Nanoscale, 2018, 10, 7544-7555.	2.8	7
137	Molecular Sponge: pH-Driven Reversible Squeezing of Stimuli-Sensitive Peptide Monolayers. Langmuir, 2019, 35, 4813-4824.	1.6	7
138	EAK Hydrogels Cross-Linked by Disulfide Bonds: Cys Number and Position Are Matched to Performances. ACS Biomaterials Science and Engineering, 2020, 6, 1154-1164.	2.6	7
139	Porphyrin-Based Supramolecular Flags in the Thermal Gradients' Wind: What Breaks the Symmetry, How and Why. Nanomaterials, 2021, 11, 1673.	1.9	7
140	Enhancement of shake-up structure in alkali-metal-ion exchanged forms of \hat{i} ±-Zr(HPO4)2 by sputtering. Journal of Electron Spectroscopy and Related Phenomena, 1982, 25, 49-57.	0.8	6
141	Preparation and enhanced conducting properties of open networks of poly(3-hexylthiophene)/carbon nanotube hybrids. RSC Advances, 2016, 6, 51485-51492.	1.7	6
142	Driving Coordination Polymer Monolayer Formation by Competitive Reactions at the Air/Water Interface. Langmuir, 2018, 34, 11706-11713.	1.6	6
143	Self-organizing models of bacterial aggregation states. Mathematical Biosciences and Engineering, 2008, 5, 75-83.	1.0	6
144	Chemical factors governing the modification of layered phosphates by low-energy ion bombardment. Nuclear Instruments & Methods in Physics Research B, 1987, 19-20, 1013-1017.	0.6	5

#	Article	IF	CITATIONS
145	Nanoscale in-depth modification of Crî—,Oî—,Si layers. Nuclear Instruments & Methods in Physics Research B, 1997, 122, 510-513.	0.6	5
146	Spatial Patterns of Microbial Retention on Polymer Surfaces. Journal of Adhesion Science and Technology, 2011, 25, 2255-2280.	1.4	5
147	Single fibres of pyro-electrospinned PVDF-HFP/MWCNT unveal high electrical conductivity. Polymer, 2018, 159, 157-161.	1.8	5
148	Chemical effects induced in alkali Phosphates by 2 keV Ar ion bombardment. Radiation Effects, 1986, 99, 121-132.	0.4	4
149	Tuning the randomization of lamellar orientation in poly(3-hexylthiophene) thin films with substrate nano-curvature. Polymer, 2021, 230, 124071.	1.8	4
150	Nanoscale organization of human serum albumin at model cytocompatible surfaces. Materials Science and Engineering C, 2001, 15, 245-248.	3.8	3
151	Growth of ordered poly(ethylene-oxide) thin films from solutions: an SFM study. Synthetic Metals, 2004, 147, 123-125.	2.1	3
152	Application of hybrid agaroseâ€aminosilane gels to the biofunctionalization of honeycomb―structured polycaprolactone scaffolds. Surface and Interface Analysis, 2010, 42, 448-451.	0.8	3
153	ToFâ€SIMS imaging of surface selfâ€organized fractal patterns of bacteria. Surface and Interface Analysis, 2011, 43, 370-375.	0.8	3
154	Polymer Crystallization on Nanocurved Substrates: Distortion Versus Dewetting. Journal of Physical Chemistry C, 2019, 123, 8967-8974.	1.5	3
155	From nanoaggregates to mesoscale ribbons: the multistep self-organization of amphiphilic peptides. Nanoscale Advances, 2021, 3, 3605-3614.	2.2	3
156	Xps Study of the Interface of Polyimide on Cr and Ni Materials Research Society Symposia Proceedings, 1989, 153, 273.	0.1	2
157	Electroactive functional hybrid layered nanocomposites. , 2012, , .		2
158	Microcapillary-like structures prompted by phospholipase A2 activation in endothelial cells and pericytes co-cultures on a polyhydroxymethylsiloxane thin film. Biochimie, 2012, 94, 1860-1870.	1.3	2
159	Structural properties of thermal evaporated SnTe thin films. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1988, 10, 463-471.	0.4	1
160	ADXPS study of the chemical structure of polyamic acid/ and polyimide/Ni interfaces. Applied Surface Science, 1994, 74, 27-36.	3.1	1
161	Title is missing!. Nuclear Instruments & Methods in Physics Research B, 2003, 209, vii-viii.	0.6	1
162	Pores Versus Fibrils: Calcium Ions Regulate Different IAPP-Mediated Membrane Damage Mechanisms. Biophysical Journal, 2013, 104, 395a.	0.2	1

#	Article	IF	CITATIONS
163	Micro-patterned nanoscale Au films on PMMA: fabrication and effect of PMMA dewetting on Au patterning. Journal of Materials Science: Materials in Electronics, 2014, 25, 1138-1147.	1.1	1
164	Energy-sustained reversible nanoscale order and conductivity increase in polymer thin films. Polymer, 2018, 153, 344-353.	1.8	1
165	Electrospun Chitosan Functionalized with C12, C14 or C16 Tails for Blood-Contacting Medical Devices. Gels, 2022, 8, 113.	2.1	1
166	Chemical Effects Induced by Low-Energy Particle Beams in Fluorozirconate Glasses. Materials Research Society Symposia Proceedings, 1989, 152, 143.	0.1	0
167	XPS Study of the Interface of Polyimide on Cr And Ni Materials Research Society Symposia Proceedings, 1989, 154, 317.	0.1	0
168	Taming Complexity: From Supramolecules to Suprafunctions. Advanced Materials, 2009, 21, 1037-1040.	11.1	0
169	LB FILMS BASED ON PHOSPHOLIPIDS: SELF-ORGANIZATION AND DOMAIN FORMATION., 2009,,.		0
170	LANGMUIR-SCHAEFER FILMS OF A NEW CALIX[4]PYRROLE-BASED MACROCYCLE EXHIBITING INDUCED CHIRALITY UPON DIFFERENTIATED BINDING WITH CHIRAL ALCOHOL VAPOURS., 2004, , .		O