Nelly M Zavaleta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5712056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Caesarean delivery rates and pregnancy outcomes: the 2005 WHO global survey on maternal and perinatal health in Latin America. Lancet, The, 2006, 367, 1819-1829.	6.3	747

Moving beyond essential interventions for reduction of maternal mortality (the WHO Multicountry) Tj ETQq000 rg $B_{.3}$ /Overlock 10 Tf 5

3	Maternal and neonatal individual risks and benefits associated with caesarean delivery: multicentre prospective study. BMJ: British Medical Journal, 2007, 335, 1025.	2.4	493
4	World Health Organization randomized trial of calcium supplementation among low calcium intake pregnant women. American Journal of Obstetrics and Gynecology, 2006, 194, 639-649.	0.7	280
5	Causes of stillbirths and early neonatal deaths: data from 7993 pregnancies in six developing countries. Bulletin of the World Health Organization, 2006, 84, 699-705.	1.5	238
6	Prenatal Iron Supplements Impair Zinc Absorption in Pregnant Peruvian Women. Journal of Nutrition, 2000, 130, 2251-2255.	1.3	133
7	Maternal near miss and maternal death in the 2005 WHO global survey on maternal and perinatal health. Bulletin of the World Health Organization, 2010, 88, 113-119.	1.5	131
8	Stable isotope labels as a tool to determine the iron absorption by Peruvian school children from a breakfast meal. Fresenius' Journal of Analytical Chemistry, 1997, 359, 445-449.	1.5	122
9	ZINC AND IRON SUPPLEMENTATION AND MALARIA, DIARRHEA, AND RESPIRATORY INFECTIONS IN CHILDREN IN THE PERUVIAN AMAZON. American Journal of Tropical Medicine and Hygiene, 2006, 75, 126-132.	0.6	121
10	Maternal Zinc Supplementation Does Not Affect Size at Birth or Pregnancy Duration in Peru. Journal of Nutrition, 1999, 129, 1563-1568.	1.3	111
11	Maternal iron status influences iron transfer to the fetus during the third trimester of pregnancy. American Journal of Clinical Nutrition, 2003, 77, 924-930.	2.2	110
12	Efficacy of Rice-based Oral Rehydration Solution Containing Recombinant Human Lactoferrin and Lysozyme in Peruvian Children With Acute Diarrhea. Journal of Pediatric Gastroenterology and Nutrition, 2007, 44, 258-264.	0.9	109
13	Efficacy of an MFGMâ€enriched Complementary Food in Diarrhea, Anemia, and Micronutrient Status in Infants. Journal of Pediatric Gastroenterology and Nutrition, 2011, 53, 561-568.	0.9	100
14	Adding zinc to prenatal iron and folate supplements improves maternal and neonatal zinc status in a Peruvian population. American Journal of Clinical Nutrition, 1999, 69, 1257-1263.	2.2	99
15	Methodological considerations in implementing the WHO Global Survey for Monitoring Maternal and Perinatal Health. Bulletin of the World Health Organization, 2008, 86, 126-131.	1.5	95
16	Adding zinc to prenatal iron and folate tablets improves fetal neurobehavioral development. American Journal of Obstetrics and Gynecology, 1999, 180, 483-490.	0.7	86
17	Randomized controlled trial of prenatal zinc supplementation and fetal bone growth. American Journal of Clinical Nutrition, 2004, 79, 826-830.	2.2	73
18	WHO Global Survey on Maternal and Perinatal Health in Latin America: classifying caesarean sections. Reproductive Health, 2009, 6, 18.	1.2	72

NELLY M ZAVALETA

#	Article	IF	CITATIONS
19	Changes in iron status during pregnancy in Peruvian women receiving prenatal iron and folic acid supplements with or without zinc. American Journal of Clinical Nutrition, 2000, 71, 956-961.	2.2	69
20	Improving iron absorption from a Peruvian school breakfast meal by adding ascorbic acid or Na2EDTA. American Journal of Clinical Nutrition, 2001, 73, 283-287.	2.2	66
21	Maternal zinc supplementation and growth in Peruvian infants. American Journal of Clinical Nutrition, 2008, 88, 154-160.	2.2	66
22	Blood pressure dynamics during pregnancy and spontaneous preterm birth. American Journal of Obstetrics and Gynecology, 2007, 197, 162.e1-162.e6.	0.7	61
23	Fetal Neurobehavioral Development: A Tale of Two Cities Developmental Psychology, 2004, 40, 445-456.	1.2	52
24	Zinc Supplementation Sustained Normative Neurodevelopment in a Randomized, Controlled Trial of Peruvian Infants Aged 6–18 Months. Journal of Nutrition, 2014, 144, 1298-1305.	1.3	50
25	Accuracy of angiogenic biomarkers at ⩽20weeks' gestation in predicting the risk of pre-eclampsia: A WHO multicentre study. Pregnancy Hypertension, 2015, 5, 330-338.	0.6	50
26	Randomized controlled trial of prenatal zinc supplementation and the development of fetal heart rate. American Journal of Obstetrics and Gynecology, 2004, 190, 1106-1112.	0.7	49
27	Intracluster correlation coefficients from the 2005 WHO Global Survey on Maternal and Perinatal Health: implications for implementation research. Paediatric and Perinatal Epidemiology, 2008, 22, 117-125.	0.8	49
28	Efficacy and Acceptability of Two Iron Supplementation Schedules in Adolescent School Girls in Lima, Peru. Journal of Nutrition, 2000, 130, 462S-464S.	1.3	38
29	Iron Deficiency, but Not Anemia, Upregulates Iron Absorption in Breast-Fed Peruvian Infants. Journal of Nutrition, 2006, 136, 2435-2438.	1.3	38
30	Maternal gestational zinc supplementation does not influence multiple aspects of child development at 54 mo of age in Peru. American Journal of Clinical Nutrition, 2010, 92, 130-136.	2.2	36
31	Prenatal development of intrafetal and maternal-fetal synchrony Behavioral Neuroscience, 2006, 120, 687-701.	0.6	35
32	Improving Dietary Intake to Prevent Anemia in Adolescent Girls through Community Kitchens in a Periurban Population of Lima, Peru. Journal of Nutrition, 2000, 130, 459S-461S.	1.3	32
33	Iron and lactoferrin in milk of anemic mothers given iron supplements. Nutrition Research, 1995, 15, 681-690.	1.3	30
34	Bioavailability of iron and zinc from a multiple micronutrient-fortified beverage. Journal of Pediatrics, 2004, 145, 26-31.	0.9	25
35	Maternal Zinc Supplementation Reduces Diarrheal Morbidity in Peruvian Infants. Journal of Pediatrics, 2010, 156, 960-964.e2.	0.9	25
36	Effect of bovine milk fat globule membranes as a complementary food on the serum metabolome and immune markers of 6-11-month-old Peruvian infants. Npj Science of Food, 2018, 2, 6.	2.5	25

NELLY M ZAVALETA

#	Article	IF	CITATIONS
37	Red blood cell metallothionein as an indicator of zinc status during pregnancy. Nutrition, 2008, 24, 1081-1087.	1.1	24
38	Anemia in infancy is associated with alterations in systemic metabolism and microbial structure and function in a sex-specific manner: an observational study. American Journal of Clinical Nutrition, 2018, 108, 1238-1248.	2.2	24
39	Understanding the factors associated with differences in caesarean section rates at hospital level: the case of Latin America. Paediatric and Perinatal Epidemiology, 2009, 23, 574-581.	0.8	23
40	Maternal Zinc Supplementation during Pregnancy Affects Autonomic Function of Peruvian Children Assessed at 54 Months of Age. Journal of Nutrition, 2011, 141, 327-332.	1.3	20
41	Development and Validation of a Food Frequency Questionnaire to Estimate Intake among Children and Adolescents in Urban Peru. Nutrients, 2017, 9, 1121.	1.7	20
42	Patterns of compliance with prenatal iron supplementation among Peruvian women. Maternal and Child Nutrition, 2014, 10, 198-205.	1.4	19
43	Infant iron status affects iron absorption in Peruvian breastfed infants at 2 and 5 mo of age. American Journal of Clinical Nutrition, 2013, 98, 1475-1484.	2.2	17
44	The Long Term Impact of Micronutrient Supplementation during Infancy on Cognition and Executive Function Performance in Pre-School Children. Nutrients, 2015, 7, 6606-6627.	1.7	16
45	Growth and Body Composition of Peruvian Infants in a Periurban Setting. Food and Nutrition Bulletin, 2009, 30, 245-253.	0.5	14
46	Iron absorption during pregnancy is underestimated when iron utilization by the placenta and fetus is ignored. American Journal of Clinical Nutrition, 2020, 112, 576-585.	2.2	14
47	Effect of maternal zinc supplementation on the cardiometabolic profile of Peruvian children: results from a randomized clinical trial. Journal of Developmental Origins of Health and Disease, 2017, 8, 56-64.	0.7	11
48	Mineral status of non-anemic Peruvian infants taking an iron and copper syrup with or without zinc from 6 to 18 months of age: A randomized controlled trial. Nutrition, 2013, 29, 1336-1341.	1.1	8
49	External validation of prognostic models to predict stillbirth using International Prediction of Pregnancy Complications (<scp>IPPIC</scp>) Network database: individual participant data metaâ€analysis. Ultrasound in Obstetrics and Gynecology, 2022, 59, 209-219.	0.9	8
50	Early growth velocities and weight gain plasticity improve linear growth in <scp>P</scp> eruvian infants. Maternal and Child Nutrition, 2015, 11, 127-137.	1.4	6
51	Nutritional influences on maternal autonomic function during pregnancy. Applied Physiology, Nutrition and Metabolism, 2009, 34, 107-114.	0.9	3
52	Negative Effect of Camu-Camu (Myrciaria dubia) Despite High Vitamin C Content on Iron Bioavailability, Using a Caco-2 Cell Model. Polish Journal of Food and Nutrition Sciences, 2014, 64, 45-48.	0.6	2
53	Efficacy of different schemes of supplementation with micronutrient powders on anemia and micronutrient status in infants. FASEB Journal, 2013, 27, 36.8.	0.2	1
54	Randomized, Controlled Trial of Prenatal Zinc Supplementation and Fetal Bone Growth. Obstetrical and Gynecological Survey, 2005, 60, 13-15.	0.2	0

#	Article	IF	CITATIONS
55	Iron Absorption and Partitioning During Pregnancy (OR35-03-19). Current Developments in Nutrition, 2019, 3, nzz048.OR35-03-19.	0.1	Ο