Ivo Dobrev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5712055/publications.pdf Version: 2024-02-01

IVO DOBREV

#	Article	IF	CITATIONS
1	Transcutaneous and percutaneous bone conduction sound propagation in single-sided deaf patients and cadaveric heads. International Journal of Audiology, 2022, 61, 678-685.	1.7	6
2	Transcranial attenuation in bone conduction stimulation. Hearing Research, 2022, 419, 108318.	2.0	8
3	Development of a finite element model of a human head including auditory periphery for understanding of bone-conducted hearing. Hearing Research, 2022, 421, 108337.	2.0	6
4	Intracochlear pressure in cadaver heads under bone conduction and intracranial fluid stimulation. Hearing Research, 2022, 421, 108506.	2.0	6
5	A New Stapes-Head Coupler for the Vibrant Soundbridge System. Audiology and Neuro-Otology, 2021, 26, 1-8.	1.3	1
6	Conductive Hearing Loss with Age—A Histologic and Audiometric Evaluation. Journal of Clinical Medicine, 2021, 10, 2341.	2.4	10
7	Round Window Reinforcement-Induced Changes in Intracochlear Sound Pressure. Applied Sciences (Switzerland), 2021, 11, 5062.	2.5	2
8	Contribution of the flexible incudo-malleal joint to middle-ear sound transmission under static pressure loads. Hearing Research, 2021, 406, 108272.	2.0	6
9	Experimental investigation of the effect of middle ear in bone conduction. Hearing Research, 2020, 395, 108041.	2.0	8
10	Comparison of sheep and human middle-ear ossicles: anatomy and inertial properties. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2020, 206, 683-700.	1.6	7
11	Dependence of skull surface wave propagation on stimulation sites and direction under bone conduction. Journal of the Acoustical Society of America, 2020, 147, 1985-2001.	1.1	11
12	Packaging Technology for an Implantable Inner Ear MEMS Microphone. Sensors, 2019, 19, 4487.	3.8	6
13	Experimental investigation of promontory motion and intracranial pressure following bone conduction: Stimulation site and coupling type dependence. Hearing Research, 2019, 378, 108-125.	2.0	32
14	Multiphoton imaging for morphometry of the sandwich-beam structure of the human stapedial annular ligament. Hearing Research, 2019, 378, 63-74.	2.0	1
15	Magnitude and phase of three-dimensional (3D) velocity vector: Application to measurement of cochlear promontory motion during bone conduction sound transmission. Hearing Research, 2018, 364, 96-103.	2.0	19
16	Effects of middle ear quasi-static stiffness on sound transmission quantified by a novel 3-axis optical force sensor. Hearing Research, 2018, 357, 1-9.	2.0	9
17	In-vivo assessment of osseous versus non-osseous transmission pathways of vibratory stimuli applied to the bone and the dura in humans. Hearing Research, 2018, 370, 40-52.	2.0	14
18	Performance evaluation of a novel piezoelectric subcutaneous bone conduction device. Hearing Research, 2018, 370, 94-104.	2.0	27

Ivo Dobrev

#	Article	IF	CITATIONS
19	Proof of Concept for an Intracochlear Acoustic Receiver for Use in Acute Large Animal Experiments. Sensors, 2018, 18, 3565.	3.8	5
20	A MEMS Condenser Microphone-Based Intracochlear Acoustic Receiver. IEEE Transactions on Biomedical Engineering, 2017, 64, 2431-2438.	4.2	22
21	Sound wave propagation on the human skull surface with bone conduction stimulation. Hearing Research, 2017, 355, 1-13.	2.0	37
22	Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure. Hearing Research, 2017, 351, 88-97.	2.0	14
23	A method to measure sound transmission via the malleus–incus complex. Hearing Research, 2016, 340, 89-98.	2.0	17
24	Interaction between osseous and non-osseous vibratory stimulation of the human cadaveric head. Hearing Research, 2016, 340, 153-160.	2.0	28
25	Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results. Hearing Research, 2016, 340, 15-24.	2.0	16
26	Influence of stimulation position on the sensitivity for bone conduction hearing aids without skin penetration. International Journal of Audiology, 2016, 55, 439-446.	1.7	40
27	Biomechanics of the incudo-malleolar-joint – Experimental investigations for quasi-static loads. Hearing Research, 2016, 340, 69-78.	2.0	16
28	Intracranial Pressure and Promontory Vibration With Soft Tissue Stimulation in Cadaveric Human Whole Heads. Otology and Neurotology, 2016, 37, e384-e390.	1.3	19
29	Transient Response of the Eardrum Excited by Localized Mechanical Forces. Conference Proceedings of the Society for Experimental Mechanics, 2016, , 31-37.	0.5	1
30	Optimization of a Lensless Digital Holographic Otoscope System for Transient Measurements of the Human Tympanic Membrane. Experimental Mechanics, 2015, 55, 459-470.	2.0	9
31	Contribution of the incudo-malleolar joint to middle-ear sound transmission. Hearing Research, 2015, 327, 218-226.	2.0	30
32	Structural Health Monitoring by Laser Shearography: Experimental and Numerical Investigations. Conference Proceedings of the Society for Experimental Mechanics, 2015, , 149-155.	0.5	4
33	Multiplexed Holography for Single-Shot Three-Dimensional Shape and Displacement Measurements. Conference Proceedings of the Society for Experimental Mechanics, 2015, , 103-108.	0.5	0
34	Full-field transient vibrometry of the human tympanic membrane by local phase correlation and high-speed holography. Journal of Biomedical Optics, 2014, 19, 096001.	2.6	18
35	Study of the Transient Response of Tympanic Membranes Under Acoustic Excitation. Conference Proceedings of the Society for Experimental Mechanics, 2014, , 1-9.	0.5	5
36	Acousto-mechanical Response of the Human TM Characterized by High-Speed Digital Holographic Methods. , 2014, , 657-660.		0

IVO DOBREV

#	Article	IF	CITATIONS
37	Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane. Hearing Research, 2013, 301, 44-52.	2.0	48
38	Digital holographic measurements of shape and three-dimensional sound-induced displacements of tympanic membrane. Optical Engineering, 2013, 52, 101916.	1.0	32
39	Assessing eardrum deformation by digital holography. SPIE Newsroom, 2013, , .	0.1	5
40	CHIC: Cylindrical Helix Imaging Coordinate Registration Fiducial for MRI-guided interventions. , 2012, 2012, 2808-12.		0
41	Miniaturization as a key factor to the development and application of advanced metrology systems. Proceedings of SPIE, 2012, , .	0.8	7
42	3D Shape Measurements with High-Speed Fringe Projection and Temporal Phase Unwrapping. Conference Proceedings of the Society for Experimental Mechanics, 2011, , 235-241.	0.5	1
43	Development of an optoelectronic holographic platform for otolaryngology applications. Proceedings of SPIE, 2010, , .	0.8	9