Ayumu Onda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5711828/publications.pdf

Version: 2024-02-01

		218677	175258
72	2,788 citations	26	52
papers	citations	h-index	g-index
72	72	72	2251
73	73	73	3251
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chemistry, 2008, 10, 1033.	9.0	555
2	Hydrolysis of Cellulose Selectively into Glucose Over Sulfonated Activated-Carbon Catalyst Under Hydrothermal Conditions. Topics in Catalysis, 2009, 52, 801-807.	2.8	174
3	Selective synthesis of 1-butanol from ethanol over strontium phosphate hydroxyapatite catalysts. Applied Catalysis A: General, 2011, 402, 188-195.	4.3	151
4	1-Butanol synthesis from ethanol over strontium phosphate hydroxyapatite catalysts with various Sr/P ratios. Journal of Catalysis, 2012, 296, 24-30.	6.2	139
5	A new chemical process for catalytic conversion of d-glucose into lactic acid and gluconic acid. Applied Catalysis A: General, 2008, 343, 49-54.	4.3	113
6	Preferential occupancy of metal ions in the hydroxyapatite solid solutions synthesized by hydrothermal method. Journal of the European Ceramic Society, 2006, 26, 509-513.	5.7	107
7	Microwave-assisted hydrothermal extraction of sulfated polysaccharides from Ulva spp. and Monostroma latissimum. Food Chemistry, 2016, 210, 311-316.	8.2	101
8	Characterization and catalytic properties of Ni–Sn intermetallic compounds in acetylene hydrogenation. Physical Chemistry Chemical Physics, 2000, 2, 2999-3005.	2.8	87
9	Lactic acid production from glucose over activated hydrotalcites as solid base catalysts in water. Catalysis Communications, 2008, 9, 1050-1053.	3.3	81
10	Nano-size particles of palladium intermetallic compounds as catalysts for oxidative acetoxylation. Applied Catalysis A: General, 2003, 251, 315-326.	4.3	72
11	Role of Structural Similarity Between Starting Zeolite and Product Zeolite in the Interzeolite Conversion Process. Journal of Nanoscience and Nanotechnology, 2013, 13, 3020-3026.	0.9	67
12	Preparation and Catalytic Properties of Single-Phase Ni–Sn Intermetallic Compound Particles by CVD of Sn(CH3)4 onto Ni/Silica. Journal of Catalysis, 2001, 201, 13-21.	6.2	65
13	New direct production of gluconic acid from polysaccharides using a bifunctional catalyst in hot water. Catalysis Communications, 2011, 12, 421-425.	3.3	56
14	Acrylic acid synthesis from lactic acid over hydroxyapatite catalysts with various cations and anions. Catalysis Today, 2014, 226, 192-197.	4.4	52
15	Hydrothermal synthesis of vanadate-substituted hydroxyapatites, and catalytic properties for conversion of 2-propanol. Applied Catalysis A: General, 2008, 348, 129-134.	4.3	49
16	Selective conversion of lactic acid into acrylic acid over hydroxyapatite catalysts. Catalysis Communications, 2014, 48, 5-10.	3.3	48
17	Characterizations and catalytic properties of fine particles of Ni–Sn intermetallic compounds supported on SiO2. Journal of Catalysis, 2004, 221, 378-385.	6.2	46
18	Hydration of \hat{l}^2 -dicalcium silicate at high temperatures under hydrothermal conditions. Cement and Concrete Research, 2006, 36, 810-816.	11.0	46

#	Article	IF	Citations
19	Hydrothermal fractional pretreatment of sea algae and its enhanced enzymatic hydrolysis. Journal of Chemical Technology and Biotechnology, 2008, 83, 836-841.	3.2	37
20	Effect of water vapor on the thermal decomposition process of zinc hydroxide chloride and crystal growth of zinc oxide. Journal of Solid State Chemistry, 2011, 184, 589-596.	2.9	36
21	Hydrothermal synthesis of vanadate/phosphate hydroxyapatite solid solutions. Materials Letters, 2008, 62, 1406-1409.	2.6	34
22	Hydrolysis of green-tide forming Ulva spp. by microwave irradiation with polyoxometalate clusters. Green Chemistry, 2014, 16, 2227.	9.0	33
23	Morphology variation of cadmium hydroxyapatite synthesized by high temperature mixing method under hydrothermal conditions. Materials Chemistry and Physics, 2009, 113, 239-243.	4.0	32
24	Accelerated formation of barium titanate by solid-state reaction in water vapour atmosphere. Journal of the European Ceramic Society, 2009, 29, 3259-3264.	5.7	31
25	A novel decomposition technique of friable asbestos by CHClF2-decomposed acidic gas. Journal of Hazardous Materials, 2009, 163, 593-599.	12.4	30
26	Stability and Phase Relations of Dicalcium Silicate Hydrates under Hydrothermal Conditions. Journal of the Ceramic Society of Japan, 2006, 114, 174-179.	1.3	28
27	Hydrothermal synthesis and morphology variation of cadmium hydroxyapatite. Journal of Solid State Chemistry, 2004, 177, 4379-4385.	2.9	26
28	Low-Temperature Activation of Branched Octane Isomers over Lanthanum-Exchanged Zeolite X Catalysts. Journal of Physical Chemistry C, 2007, 111, 210-218.	3.1	26
29	Synthesis of manganese oxide octahedral molecular sieves containing cobalt, nickel, or magnesium, and the catalytic properties for hydration of acrylonitrile. Applied Catalysis A: General, 2007, 321, 71-78.	4.3	25
30	Synthesis and crystallographic study of Pb–Sr hydroxyapatite solid solutions by high temperature mixing method under hydrothermal conditions. Materials Research Bulletin, 2009, 44, 1392-1396.	5.2	25
31	Adsorption and Polarization of Branched Alkanes on Hâ^'LaX. Journal of Physical Chemistry C, 2007, 111, 5454-5464.	3.1	24
32	Selective Hydrolysis of Cellulose and Polysaccharides into Sugars by Catalytic Hydrothermal Method Using Sulfonated Activated-carbon. Journal of the Japan Petroleum Institute, 2012, 55, 73-86.	0.6	23
33	Comparative decomposition kinetics of neutral monosaccharides by microwave and induction heating treatments. Carbohydrate Research, 2013, 375, 1-4.	2.3	23
34	Crystallographic study of lead-substituted hydroxyapatite synthesized by high-temperature mixing method under hydrothermal conditions. Inorganica Chimica Acta, 2010, 363, 1785-1790.	2.4	19
35	Effects of ionic conduction on hydrothermal hydrolysis of corn starch and crystalline cellulose induced by microwave irradiation. Carbohydrate Polymers, 2016, 137, 594-599.	10.2	19
36	Fourfold daily growth rate in multicellular marine alga Ulva meridionalis. Scientific Reports, 2020, 10, 12606.	3.3	19

#	Article	IF	Citations
37	Thermal decomposition of chrysotile-containing wastes in a water vapor atmosphere. Journal of the Ceramic Society of Japan, 2010, 118, 1199-1201.	1.1	18
38	Synthesis and growth mechanism of monodispersed MoS2 sheets/carbon microspheres. CrystEngComm, 2012, 14, 3027.	2.6	17
39	Non-aqueous Synthesis and Structure of a Novel Monodimensional Zirconium Phosphate: [NH4]3[Zr(OH)2(PO4)(HPO4)]. Chemistry Letters, 2002, 31, 398-399.	1.3	16
40	Hydrolysis of Oligosaccharides and Polysaccharides on Sulfonated Solid Acid Catalysts: Relations between Adsorption Properties and Catalytic Activities. ACS Omega, 2020, 5, 24964-24972.	3.5	16
41	Development of a technique to prepare porous materials from glasses. Journal of the European Ceramic Society, 2006, 26, 761-765.	5.7	14
42	Hydrothermal Sintering under Mild Temperature Conditions: Preparation of Calcium-deficient Hydroxyapatite Compacts. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2010, 65, 1038-1044.	0.7	14
43	New extraction procedure for protonated polyoxometalates prepared in aqueous-organic solution and characterisation of their catalytic ability. Applied Catalysis A: General, 2014, 485, 181-187.	4.3	14
44	Preparation of alkaline-earth titanates by accelerated solid-state reaction in water vapor atmosphere. Journal of the European Ceramic Society, 2010, 30, 3435-3443.	5.7	13
45	Preparation of \hat{I}^2 -CaSiO₃ powder by water vapor-assisted solid-state reaction. Journal of the Ceramic Society of Japan, 2013, 121, 103-105.	1.1	13
46	One pot direct catalytic conversion of cellulose to C3 and C4 hydrocarbons using Pt/H-USY zeolite catalyst at low temperature. Fuel Processing Technology, 2016, 141, 123-129.	7.2	12
47	HYDROTHERMAL SYNTHESIS AND PARTICLE SIZE CONTROL OF HYDROXYAPATITE SOLID SOLUTIONS WITH VANADATE. Phosphorus Research Bulletin, 2007, 21, 84-87.	0.6	11
48	Catalytic Hydrolysis of Polysaccharides Derived from Fastâ€Growing Green Macroalgae. ChemCatChem, 2017, 9, 2638-2641.	3.7	11
49	Probing rapid carbon fixation in fast-growing seaweed Ulva meridionalis using stable isotope 13C-labelling. Scientific Reports, 2020, 10, 20399.	3.3	11
50	Is Selective Heating of the Sulfonic Acid Catalyst AC-SO3H by Microwave Radiation Crucial in the Acid Hydrolysis of Cellulose to Glucose in Aqueous Media?. Catalysts, 2017, 7, 231.	3.5	10
51	HYDROTHERMAL SYNTHESIS AND CRYSTALLOGRAPHIC STUDY OF Ca-Sr HYDROXYAPATITE SOLID SOLUTIONS. Phosphorus Research Bulletin, 2004, 17, 215-220.	0.6	8
52	Accelerated Formation of \hat{l}^2 -Dicalcium Silicate by Solid-state Reaction in Water Vapor Atmosphere. Chemistry Letters, 2009, 38, 476-477.	1.3	8
53	Lowâ€Temperature Direct Catalytic Hydrothermal Conversion of Biomass Cellulose to Light Hydrocarbons over Pt/Zeolite Catalysts. ChemistrySelect, 2017, 2, 6201-6205.	1.5	8

Synthesis and characterization of glycolate precursors to MTiO₃ (MÂ=ÂNi²⁺,) Tj ETQq0 Q Q rgBT /Qverlock 10

#	Article	IF	CITATIONS
55	Hydrothermal Synthesis of Various Shape-Controlled Europium Hydroxides. Nanomaterials, 2021, 11, 529.	4.1	8
56	Hydrothermal Synthesis and Crystallographic Study of Sr-Pb Hydroxyapatite Solid Solutions. Journal of the Ceramic Society of Japan, 2007, 115, 873-876.	1.1	7
57	Microwave-assisted solubilization of microalgae in high-temperature ethylene glycol. Biomass and Bioenergy, 2019, 130, 105360.	5.7	7
58	Hydrothermal Synthesis of Boehmite Plate Crystals. Journal of the Ceramic Society of Japan, 2007, 115, 894-897.	1.1	6
59	Synthesis of Novel Layered Zinc Glycolate and Exchange of Ethylene Glycol with Manganese Acetate Complex. Bulletin of the Chemical Society of Japan, 2018, 91, 1546-1552.	3.2	6
60	The Role of the Surface Acid–Base Nature of Nanocrystalline Hydroxyapatite Catalysts in the 1,6-Hexanediol Conversion. Nanomaterials, 2021, 11, 659.	4.1	6
61	Densification behavior of hydroxyapatite green pellets prepared by different methods. Journal of the Ceramic Society of Japan, 2015, 123, 1097-1101.	1.1	5
62	Photocatalytic chemoselective cleavage of C–O bonds under hydrogen gas- and acid-free conditions. Chemical Communications, 2018, 54, 7298-7301.	4.1	5
63	Photocatalytic hydrogenation of nitrobenzene to aniline over titanium(<scp>iv</scp>) oxide using various saccharides instead of hydrogen gas. RSC Advances, 2021, 11, 32300-32304.	3.6	4
64	DEVELOPMENT OF LOW TEMPERATURE SINTERING OF HYDROXYAPATITE CERAMICS USING HYDROTHERMAL HOT-PRESSING METHOD. Phosphorus Research Bulletin, 2004, 17, 231-234.	0.6	3
65	Catalytic Performance of Autoclave Liners in the Wet Oxidation of Naphthalene. Industrial & Samp; Engineering Chemistry Research, 2006, 45, 2194-2198.	3.7	3
66	Hydrothermal synthesis of spindle-like architectures of terbium hydroxide. Journal of the Ceramic Society of Japan, 2015, 123, 672-676.	1.1	3
67	Fractionation of plant-cuticle-based bio-oils by microwave-assisted methanolysis combined with hydrothermal pretreatment and enzymatic hydrolysis. Heliyon, 2019, 5, e01887.	3.2	2
68	Production of Glucaric/Gluconic Acid from Biomass by Chemical Processes Using Heterogeneous Catalysts. Biofuels and Biorefineries, 2017, , 207-230.	0.5	2
69	HYDROTHERMAL PREPARATION OF HYDROXYAPATITE SOLID SOLUTIONS WITH VARIOUS METAL IONS. Phosphorus Research Bulletin, 2005, 19, 99-105.	0.6	0
70	A Study of Hydrothermal Synthesis of Apatite Compound Particles and Applications for Catalytic Conversions of Biomass Derivatives. Journal of Smart Processing, 2016, 5, 327-333.	0.1	0
71	Preparation of reformed MgO filler with high humidity resistance by a hydrothermal coating technique Journal of Asian Ceramic Societies, 2021, 9, 262-269.	2.3	0
72	HYDROTHERMAL AND HYDROTHERMAL-ELECTROCHEMICAL GROWTH OF COMPLEX OXIDE THIN FILMS RELEVANT TO MICROELECTRONICS. , 2003, , .		0