Ji-Hun Seo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/571160/publications.pdf

Version: 2024-02-01

		361296	360920
57	1,337	20	35
papers	citations	h-index	g-index
59	59	59	1688
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling–deswelling methods with phospholipids moiety containing ABA-type block copolymers. Biomaterials, 2008, 29, 1367-1376.	5.7	121
2	Inducing Rapid Cellular Response on RGD-Binding Threaded Macromolecular Surfaces. Journal of the American Chemical Society, 2013, 135, 5513-5516.	6.6	107
3	Adsorption state of fibronectin on poly(dimethylsiloxane) surfaces with varied stiffness can dominate adhesion density of fibroblasts. Acta Biomaterialia, 2013, 9, 5493-5501.	4.1	68
4	Cell adhesion on phase-separated surface of block copolymer composed of poly(2-methacryloyloxyethyl phosphorylcholine) and poly(dimethylsiloxane). Biomaterials, 2009, 30, 5330-5340.	5.7	67
5	Development of anti-biofouling interface on hydroxyapatite surface by coating zwitterionic MPC polymer containing calcium-binding moieties to prevent oral bacterial adhesion. Acta Biomaterialia, 2016, 40, 70-77.	4.1	64
6	Development of a supramolecular accelerator simultaneously to increase the cross-linking density and ductility of an epoxy resin. Chemical Engineering Journal, 2019, 356, 303-311.	6.6	58
7	Designing dynamic surfaces for regulation of biological responses. Soft Matter, 2012, 8, 5477.	1.2	57
8	The significance of hydrated surface molecular mobility in the control of the morphology of adhering fibroblasts. Biomaterials, 2013, 34, 3206-3214.	5.7	52
9	The effect of molecular mobility of supramolecular polymer surfaces on fibroblast adhesion. Biomaterials, 2013, 34, 55-63.	5.7	47
10	Directing Stem Cell Differentiation by Changing the Molecular Mobility of Supramolecular Surfaces. Advanced Healthcare Materials, 2015, 4, 215-222.	3.9	46
11	Anti-inflammatory and Antibacterial Effects of Covalently Attached Biomembrane-Mimic Polymer Grafts on Gore-Tex Implants. ACS Applied Materials & Samp; Interfaces, 2017, 9, 19161-19175.	4.0	42
12	Quick and simple modification of a poly(dimethylsiloxane) surface by optimized molecular design of the anti-biofouling phospholipid copolymer. Soft Matter, 2011, 7, 2968.	1.2	39
13	Alleviation of capsular formations on silicone implants in rats using biomembrane-mimicking coatings. Acta Biomaterialia, 2014, 10, 4217-4225.	4.1	37
14	Fabrication of an Anti-Biofouling Plasma-Filtration Membrane by an Electrospinning Process Using Photo-Cross-linkable Zwitterionic Phospholipid Polymers. ACS Applied Materials & Samp; Interfaces, 2017, 9, 19591-19600.	4.0	29
15	Mechanically Reinforced Gelatin Hydrogels by Introducing Slidable Supramolecular Cross-Linkers. Polymers, 2019, 11, 1787.	2.0	29
16	Mechanically Interlocked Polymer Electrolyte with Builtâ€In Fast Molecular Shuttles for Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2021, 11, 2102583.	10.2	27
17	UV-Cleavable Polyrotaxane Cross-Linker for Modulating Mechanical Strength of Photocurable Resin Plastics. ACS Macro Letters, 2015, 4, 1154-1157.	2.3	26
18	Conformational recovery and preservation of protein nature from heat-induced denaturation by water-soluble phospholipid polymer conjugation. Biomaterials, 2009, 30, 4859-4867.	5.7	23

#	Article	IF	CITATIONS
19	Calcium-Binding Polymer-Coated Poly(lactide- <i>co</i> -glycolide) Microparticles for Sustained Release of Quorum Sensing Inhibitors to Prevent Biofilm Formation on Hydroxyapatite Surfaces. ACS Applied Materials & Surfaces. 11, 7686-7694.	4.0	22
20	Dynamic polyrotaxane-coated surface for effective differentiation of mouse induced pluripotent stem cells into cardiomyocytes. RSC Advances, 2016, 6, 35668-35676.	1.7	21
21	Foldable and Extremely Scratch-Resistant Hard Coating Materials from Molecular Necklace-like Cross-Linkers. ACS Applied Materials & Samp; Interfaces, 2019, 11, 27306-27317.	4.0	21
22	Optimizing grafting thickness of zwitterionic sulfobetaine polymer on cross-linked polyethylene surface to reduce friction coefficient. Applied Surface Science, 2018, 452, 102-112.	3.1	19
23	Enhanced Mechanical Strength, Flexibility, and Shape-Restoring Rate of a Drug-Eluting Shape-Memory Polymer by Incorporation of Supramolecular Cross-Linkers. ACS Macro Letters, 2020, 9, 389-395.	2.3	18
24	Effect of hydrophilic polymer conjugation on heat-induced conformational changes in a protein. Acta Biomaterialia, 2011, 7, 1477-1484.	4.1	17
25	Preparation of pH-sensitive CaP nanoparticles coated with a phosphate-based block copolymer for efficient gene delivery. Polymer, 2012, 53, 4678-4685.	1.8	17
26	Surface zwitterionization: Effective method for preventing oral bacterial biofilm formation on hydroxyapatite surfaces. Applied Surface Science, 2018, 427, 517-524.	3.1	17
27	Mobility of the Arg-Gly-Asp ligand on the outermost surface of biomaterials suppresses integrin-mediated mechanotransduction and subsequent cell functions. Acta Biomaterialia, 2015, 13, 42-51.	4.1	15
28	Covalently Grafted 2-Methacryloyloxyethyl Phosphorylcholine Networks Inhibit Fibrous Capsule Formation around Silicone Breast Implants in a Porcine Model. ACS Applied Materials & Empty Interfaces, 2020, 12, 30198-30212.	4.0	15
29	Synthesis of biomembrane-mimic polymers with various phospholipid head groups. Polymer, 2014, 55, 517-524.	1.8	14
30	All-organic piezoelectric elastomer formed through the optimal cross-linking of semi-crystalline polyrotaxanes. Chemical Engineering Journal, 2021, 426, 130792.	6.6	14
31	Structural Reorganization and Fibrinogen Adsorption Behaviors on the Polyrotaxane Surfaces Investigated by Sum Frequency Generation Spectroscopy. ACS Applied Materials & Enterfaces, 2015, 7, 22709-22718.	4.0	13
32	Developing a thermal grafting process for zwitterionic polymers on cross-linked polyethylene with geometry-independent grafting thickness. Acta Biomaterialia, 2019, 85, 180-191.	4.1	12
33	Modulation of friction dynamics in water by changing the combination of the loop- and graft-type poly(ethylene glycol) surfaces. Soft Matter, 2015, 11, 936-942.	1.2	10
34	Ion-Conducting, Supramolecular Crosslinked Elastomer with a Wide Linear Range of Strain Resistances. ACS Applied Polymer Materials, 2021, 3, 5012-5021.	2.0	9
35	Optimization of Anisotropic Crystalline Structure of Molecular Necklace-like Polyrotaxane for Tough Piezoelectric Elastomer. ACS Macro Letters, 2021, 10, 1371-1376.	2.3	8
36	Synthesis of a resin monomer-soluble polyrotaxane crosslinker containing cleavable end groups. Beilstein Journal of Organic Chemistry, 2014, 10, 2623-2629.	1.3	7

#	Article	IF	CITATIONS
37	Inside Cover: Charge-Conversional Polyionic Complex Micelles-Efficient Nanocarriers for Protein Delivery into Cytoplasm (Angew. Chem. Int. Ed. 29/2009). Angewandte Chemie - International Edition, 2009, 48, 5220-5220.	7.2	6
38	Surface-Restructuring Differences between Polyrotaxanes and Random Copolymers in Aqueous Environment. Langmuir, 2018, 34, 12463-12470.	1.6	6
39	Copolymerization of zwitterionic carboxybetaine and various hydrophobic groups to optimize antifouling and biocompatible properties. Journal of Industrial and Engineering Chemistry, 2021, 96, 284-293.	2.9	6
40	Slidable Cross-Linking Effect on Liquid Crystal Elastomers: Enhancement of Toughness, Shape-Memory, and Self-Healing Properties. ACS Applied Materials & Samp; Interfaces, 2022, 14, 32486-32496.	4.0	6
41	Diffusion-Induced Hydrophilic Conversion of Polydimethylsiloxane/Block-Type Phospholipid Polymer Hybrid Substrate for Temporal Cell-Adhesive Surface. ACS Applied Materials & 2016, 8, 21839-21846.	4.0	5
42	Phosphorylcholine-based encoded hydrogel microparticles with enhanced fouling resistance for multiplex immunoassays. Analyst, The, 2020, 145, 5482-5490.	1.7	5
43	Scratch Properties of Clear Coat for Automotive Coating Comprising Molecular Necklace Crosslinkers with Silane Functional Groups for Various Environmental Factors. Polymers, 2021, 13, 3933.	2.0	5
44	Control of osmotic pressure through CO ₂ -capture and release facilitated by the lower critical solution temperature (LCST) phase transition of acylated branched polyethylenimine. RSC Advances, 2016, 6, 26526-26530.	1.7	4
45	Mechanical Durability of Flexible Printed Circuit Boards Containing Thin Coverlays Fabricated with Poly(Amide-Imide-Urethane)/Epoxy Interpenetrating Networks. Micromachines, 2021, 12, 943.	1.4	4
46	Roles of zwitterionic charges in polymers on synthesis of Ag seeds with anisotropic growth properties. Journal of Industrial and Engineering Chemistry, 2020, 89, 166-174.	2.9	4
47	Carbon Dots with Tailored Surface Wettability as Pickering Emulsifiers. ACS Applied Nano Materials, 2022, 5, 10258-10267.	2.4	4
48	The effects of nanophase-separated amphiphilic domains on cell adhesion. Transactions of the Materials Research Society of Japan, 2011, 36, 577-580.	0.2	3
49	Formation of polyion complex micelles with tunable isoelectric points based on zwitterionic block copolymers. Macromolecular Research, 2012, 20, 1249-1256.	1.0	3
50	Relationships between molecular mobility, fibrillogenesis of collagen molecules, and the inflammatory response: An experimental study in vitro and in vivo. Journal of Colloid and Interface Science, 2014, 433, 16-25.	5.0	3
51	Enhanced osteogenic differentiation of mesenchymal stem cells by surface lithium modification in a sandblasted/acid-etched titanium implant. Journal of Biomaterials Applications, 2022, 37, 447-458.	1.2	3
52	One-Pot Synthesis of a Zwitterionic Small Molecule Bearing Disulfide Moiety for Antibiofouling Macro- and Nanoscale Gold Surfaces. Langmuir, 2019, 35, 1768-1777.	1.6	2
53	Photo-immobilization of pseudozwitterionic polymers with balanced electrical charge for developing anti-coagulation surfaces. Journal of Industrial and Engineering Chemistry, 2020, 91, 263-272.	2.9	2
54	Injectable polydimethylsiloxane microfiller coated with zwitterionic polymer for enhanced biocompatibility. Colloids and Surfaces B: Biointerfaces, 2021, 210, 112223.	2.5	1

#	Article	IF	CITATIONS
55	Preclinical testing of an anal bulking agent coated with a zwitterionic polymer in a fecal incontinence rat model. Journal of Materials Chemistry B, 2022, 10, 2708-2718.	2.9	1
56	Simultaneous patterning of proteins and cells through bioconjugation with photoreactable phospholipid polymers. RSC Advances, 2017, 7, 40669-40672.	1.7	0
57	Mechanically Interlocked Polymer Electrolyte with Builtâ€In Fast Molecular Shuttles for Allâ€Solidâ€State Lithium Batteries (Adv. Energy Mater. 44/2021). Advanced Energy Materials, 2021, 11, 2170173.	10.2	0