
Pilar Eraso Mazmela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5711464/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activation of yeast plasma membrane ATPase by acid pH during growth. FEBS Letters, 1987, 224, 187-192.	1.3	161
2	Changes in the concentration of cAMP, fructose 2,6-bisphosphate and related metabolites and enzymes in Saccharomyces cerevisiae during growth on glucose. FEBS Journal, 1987, 164, 369-373.	0.2	121
3	Analysis of the regulatory domain of yeast plasma membrane H+-ATPase by directed mutagenesis and intragenic suppression. FEBS Letters, 1991, 287, 71-74.	1.3	109
4	LOXL2 drives epithelial-mesenchymal transition via activation of IRE1-XBP1 signalling pathway. Scientific Reports, 2017, 7, 44988.	1.6	93
5	Catabolite repression in yeasts is not associated with low levels of cAMP. FEBS Journal, 1984, 141, 195-198.	0.2	90
6	Tight control of the amount of yeast plasma membrane ATPase during changes in growth conditions and gene dosage. FEBS Letters, 1987, 224, 193-197.	1.3	78
7	Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H+-ATPase. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 164-170.	1.4	58
8	Use of glucose analogues to study the mechanism of glucose-mediated cAMP increase in yeast. FEBS Letters, 1985, 191, 51-54.	1.3	47
9	Ycf1-dependent cadmium detoxification by yeast requires phosphorylation of residues Ser908and Thr911. FEBS Letters, 2004, 577, 322-326.	1.3	34
10	Biological roles of cAMP: similarities and differences between organisms. Trends in Biochemical Sciences, 1985, 10, 210-212.	3.7	31
11	Screening for mutations in Spanish families with myotonia. Functional analysis of novel mutations in CLCN1 gene. Neuromuscular Disorders, 2012, 22, 231-243.	0.3	31
12	UPR: An Upstream Signal to EMT Induction in Cancer. Journal of Clinical Medicine, 2019, 8, 624.	1.0	30
13	Internal acidification and cAMP increase are not correlated in Saccharomyces cerevisiae. FEBS Journal, 1987, 165, 671-674.	0.2	29
14	Functional Domain Analysis of the Yeast ABC Transporter Ycf1p by Site-directed Mutagenesis. Journal of Biological Chemistry, 1999, 274, 23584-23590.	1.6	27
15	Domain Interactions in the Yeast ATP Binding Cassette Transporter Ycf1p: Intragenic Suppressor Analysis of Mutations in the Nucleotide Binding Domains. Journal of Bacteriology, 2001, 183, 4761-4770.	1.0	23
16	Specific phosphoantibodies reveal two phosphorylation sites in yeast Pma1 in response to glucose. FEMS Yeast Research, 2015, 15, fov030.	1.1	21
17	Pitfalls in the measurement of membrane potential in yeast cells using tetraphenylphosphonium. Biochimica Et Biophysica Acta - Biomembranes, 1984, 778, 516-520.	1.4	17
18	Efficient degradation of misfolded mutant Pma1 by endoplasmic reticulumâ€associated degradation requires Atg19 and the Cvt/autophagy pathway. Molecular Microbiology, 2007, 63, 1069-1077.	1.2	15

#	Article	IF	CITATIONS
19	Glucose-independent inhibition of yeast plasma-membrane H+-ATPase by calmodulin antagonists. Biochemical Journal, 1997, 322, 823-828.	1.7	13
20	Sequence analysis of a 14·6 kb DNA fragment of Saccharomyces cerevisiae chromosome VII reveals SEC27, SSM1b, a putative S-adenosylmethionine-dependent enzyme and six new open reading frames. Yeast, 1996, 12, 887-892.	0.8	6
21	Gene expression profiling of yeasts overexpressing wild type or misfolded Pma1 variants reveals activation of the Hog1 MAPK pathway. Molecular Microbiology, 2011, 79, 1339-1352.	1.2	6
22	A Dominant Negative Mutant of Pma1 Interferes with the Folding of the Wild Type Enzyme. Traffic, 2010, 11, 37-47.	1.3	5
23	The plasma membrane H+-ATPase of fungi and plants. Biomembranes: A Multi-Volume Treatise, 1996, 5, 225-240.	0.1	0
24	Characterization of Two Second-Site Mutations Preventing Wild Type Protein Aggregation Caused by a Dominant Negative PMA1 Mutant. PLoS ONE, 2013, 8, e67080.	1.1	0