Mateusz Szala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5711431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluorophenol-Containing Hydrogen-Bond Acidic Polysiloxane for Gas Sensing-Synthesis and Characterization. Polymers, 2022, 14, 1147.	2.0	0
2	Conductive printable electrodes tuned by boron-doped nanodiamond foil additives for nitroexplosive detection. Mikrochimica Acta, 2022, 189, .	2.5	6
3	Properties of Polyethylene Terephthalate (PET) after Thermo-Oxidative Aging. Materials, 2021, 14, 3833.	1.3	39
4	The Multi-Gas Sensor for Remote UAV and UGV Missions—Development and Tests. Sensors, 2021, 21, 7608.	2.1	8
5	Polymer-bonded secondary explosives. MateriaÅ,y Wysokoenergetyczne / High Energy Materials, 2021, , 5-16.	0.2	5
6	Highly tilted antiferroelectric <i>(R)</i> enantiomers useful for the formulation of eutectic mixtures. Liquid Crystals, 2020, 47, 179-190.	0.9	6
7	Electrochemical determination of nitroaromatic explosives at boron-doped diamond/graphene nanowall electrodes: 2,4,6-trinitrotoluene and 2,4,6-trinitroanisole in liquid effluents. Journal of Hazardous Materials, 2020, 387, 121672.	6.5	59
8	Analysis of samples of explosives excavated from the Baltic Sea floor. Science of the Total Environment, 2020, 708, 135198.	3.9	15
9	Performance of Magnesium, Mgâ€Al Alloy and Silicon in Thermobaric Explosives – A Comparison to Aluminium. Propellants, Explosives, Pyrotechnics, 2020, 45, 1691-1697.	1.0	9
10	Interactions of Fe–N–S Co-Doped Porous Carbons with Bacteria: Sorption Effect and Enzyme-Like Properties. Materials, 2020, 13, 3707.	1.3	3
11	Electrochemical Detection of 4,4',5,5'-Tetranitro-1H,1'H-2,2'-Biimidazole on Boron-Doped Diamond/Graphene Nanowall Electrodes. IEEE Sensors Journal, 2020, 20, 9637-9643.	2.4	6
12	Structure and sorption properties of multifunctional acrylic polymers designed for solid phase microextraction fibers. Polymer, 2020, 190, 122191.	1.8	1
13	Chromatographic determination of the free energy of adsorption and absorption characteristic of 4-(trans-4′-n-alkylcyclohexyl) benzoates. Journal of Chromatography A, 2020, 1622, 461120.	1.8	2
14	New energetic materials derived from common explosives. Review. MateriaÅ,y Wysokoenergetyczne / High Energy Materials, 2020, , 90-110.	0.2	2
15	Thermochemical Properties, Ballistic Parameters and Sensitivity of New RDX-based Propellants. Central European Journal of Energetic Materials, 2020, 17, 223-238.	0.5	2
16	Synthesis of nitrogen-rich compounds and their use in novel composite propellants. , 2020, , .		0
17	Development trends in artillery ammunition propellants. MateriaÅ,y Wysokoenergetyczne / High Energy Materials, 2020, , 5-16.	0.2	1
18	Synthesis and Energetic Properties of 1,3,7,9â€Tetranitrobenzo[c]Cinnolineâ€5â€Oxide (TNBCO). Propellants, Explosives, Pyrotechnics, 2019, 44, 1509-1514.	1.0	2

MATEUSZ SZALA

#	Article	IF	CITATIONS
19	Synclinic and anticlinic properties of (R,S) 4′-(1-methylheptyloxycarbonyl)biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy)heptyl-1-oxy]benzoates. Phase Transitions, 2019, 92, 657-666.	0.6	6
20	Synthesis and properties of antiferroelectric and/or ferroelectric compounds with the –CH ₂ O group close to chirality centre. Liquid Crystals, 2019, 46, 2245-2255.	0.9	9
21	Sea-dumped ammunition as a possible source of mercury to the Baltic Sea sediments. Science of the Total Environment, 2019, 674, 363-373.	3.9	25
22	Synthesis and properties of ferro- and antiferroelectric esters with a chiral centre based on (S)-(+)-3-octanol. Liquid Crystals, 2019, 46, 299-308.	0.9	19
23	Evaluation of selected SERS substrates for trace detection of explosive materials using portable Raman systems. Vibrational Spectroscopy, 2019, 100, 79-85.	1.2	43
24	Preparation and investigation of the properties of hexanitrohexaazatricyclododecanidione (HHTDD). MateriaÅ,y Wysokoenergetyczne / High Energy Materials, 2019, , 88-94.	0.2	0
25	NMR spectra of chiral smectic liquid crystals differing in helical parameters. Liquid Crystals, 2018, 45, 1385-1395.	0.9	6
26	5,5′,6,6′â€īetranitroâ€2,2′â€bibenzimidazole: A Thermally Stable and Insensitive Energetic Compound. ChemPlusChem, 2018, 83, 87-91.	1.3	12
27	Effect of Titanium and Zirconium Hydrides on the Detonation Heat of RDXâ€based Explosives – A Comparison to Aluminium. Propellants, Explosives, Pyrotechnics, 2018, 43, 280-285.	1.0	18
28	Effect of lateral fluorine substitution far from the chiral center on mesomorphic behaviour of highly titled antiferroelectric (S) and (R) enantiomers. Journal of Molecular Liquids, 2018, 267, 504-510.	2.3	37
29	2,4,6â€Trinitrotoluene – A Useful Starting Compound in the Synthesis of Modern Energetic Compounds. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 262-269.	0.6	15
30	Interactions between bacteria and heteroatom-modified nanoporous carbon: The influence of nitrogen and sulfur doping. Carbon, 2018, 127, 479-490.	5.4	9
31	Effect of Titanium and Zirconium Hydrides on the Parameters of Confined Explosions of RDXâ€Based Explosives – A Comparison to Aluminium. Propellants, Explosives, Pyrotechnics, 2018, 43, 1048-1055.	1.0	10
32	Studies on the thermal behaviour and safety of a novel thermostable explosive 5,5′,6,6′-tetranitro-2,2′-bibenzimidazole. Thermochimica Acta, 2018, 668, 126-131.	1.2	9
33	The microbial toxicity of quaternary ammonium ionic liquids is dependent on the type of lipopolysaccharide. Journal of Molecular Liquids, 2018, 266, 540-547.	2.3	45
34	Origin of microporosity in chalcogen-doped carbon materials: The case of selenium-doped carbogels. Microporous and Mesoporous Materials, 2018, 272, 260-264.	2.2	9
35	Development of analytical methods used for the study of 2,4,6-trinitrotoluene degradation kinetics in simulated sediment samples from the Baltic Sea. Marine Pollution Bulletin, 2018, 135, 397-410.	2.3	3
36	Interaction of quaternary ammonium ionic liquids with bacterial membranes – Studies with Escherichia coli R1–R4-type lipopolysaccharides. Journal of Molecular Liquids, 2017, 246, 282-289.	2.3	48

MATEUSZ SZALA

#	Article	IF	CITATIONS
37	Synthesis and Properties of 4,4',5,5'-Tetranitro-1H,1'H-2,2'-Biimidazole Salts: Semicarbazidium, 3-Amino-1,2,4-Triazolium, and 5-Aminotetrazolium Derivatives. Chemistry of Heterocyclic Compounds, 2017, 53, 697-701.	0.6	5
38	Modified Pechini synthesis of Bi2ZnB2O7 nanoparticles. Journal of Alloys and Compounds, 2017, 725, 587-597.	2.8	16
39	Synthesis and Energetic Properties of Imidazolium and 2-Methylimidazolium Salts of 3-Nitro-1,2,4-Triazol-5-One. Propellants, Explosives, Pyrotechnics, 2017, 42, 1027-1031.	1.0	3
40	Origin of PYX thermal stability investigation with calorimetric and spectroscopic methods. Journal of Thermal Analysis and Calorimetry, 2017, 130, 2047-2054.	2.0	10
41	Explosive Properties and Thermal Stability of Urea-Hydrogen Peroxide Adduct. Propellants, Explosives, Pyrotechnics, 2017, 42, 198-203.	1.0	14
42	Microstructural and nonlinear optical properties of Bi2ZnB2O7:RE3+ powders. Journal of Alloys and Compounds, 2017, 694, 959-970.	2.8	10
43	Preliminary Study of New Propellants Containing Guanidinium or Triaminoguanidinium Azotetrazolate. Propellants, Explosives, Pyrotechnics, 2017, 42, 1278-1282.	1.0	4
44	Synthesis of SiC/Ag/Cellulose Nanocomposite and Its Antibacterial Activity by Reactive Oxygen Species Generation. Nanomaterials, 2016, 6, 171.	1.9	14
45	Adsorption of 2,4-dichlorophenol and 2,4-dichlorophenoxyacetic acid from aqueous solutions on carbonaceous materials obtained by combustion synthesis. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63, 371-378.	2.7	53
46	Transmission and Reflection Terahertz Spectroscopy of Insensitive Melt-Cast High-Explosive Materials. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37, 977-992.	1.2	13
47	Characterization of prospective explosive materials using terahertz time-domain spectroscopy. Applied Optics, 2016, 55, 4575.	2.1	30
48	1H, 13C and 15N Nuclear Magnetic Resonance Analysis of 3,3',4,4'-Diaminoazoxyfurazan Obtained by Oxidation of 3,4-Diaminofurazan with Peroxyformic Acid. Central European Journal of Energetic Materials, 2016, 13, 349-356.	0.5	1
49	NTO-based Melt-cast Insensitive Compositions. Central European Journal of Energetic Materials, 2016, 13, 592-611.	0.5	8
50	Explosive Properties of 4,4',5,5'-Tetranitro-2,2'-bi-1H-imidazole Dihydrate. Central European Journal of Energetic Materials, 2016, 13, 612-626.	0.5	6
51	Studies of Confined Explosions of Composite Explosives and Layered Charges. Central European Journal of Energetic Materials, 2016, 13, 957-977.	0.5	8
52	A Melt-Cast Composition Based on NTO and FOX-7. Central European Journal of Energetic Materials, 2016, 13, 882-902.	0.5	7
53	Interaction of Gram-Positive and Gram-Negative Bacteria with Ceramic Nanomaterials Obtained by Combustion Synthesis – Adsorption and Cytotoxicity Studies. Polish Journal of Microbiology, 2016, 65, 161-170.	0.6	3
54	Study of the Heat and Kinetics of Nitration of 1,2,4-Triazol-5-one (TO). Propellants, Explosives, Pyrotechnics, 2015, 40, 498-505.	1.0	5

MATEUSZ SZALA

#	Article	IF	CITATIONS
55	Adsorption Studies of the Gram-Negative Bacteria onto Nanostructured Silicon Carbide. Applied Biochemistry and Biotechnology, 2015, 175, 1448-1459.	1.4	32
56	Oxidative stress in bacteria (Pseudomonas putida) exposed to nanostructures of silicon carbide. Chemosphere, 2015, 135, 233-239.	4.2	13
57	Toxic effect assessment of aminotetrazoles and high-energetic azotetrazole salts on soil microbial respiration. Chemistry and Ecology, 2014, 30, 339-349.	0.6	1
58	Sulfur-doped porous carbons: Synthesis and applications. Carbon, 2014, 68, 1-32.	5.4	537
59	Toxicity assessment of SiC nanofibers and nanorods against bacteria. Ecotoxicology and Environmental Safety, 2014, 100, 287-293.	2.9	14
60	Synthesis of Carbon Fibers by Combustion Route. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 879-887.	1.0	4
61	Adsorption studies of azotetrazolate and 3,6-dihydrazinotetrazine on peat. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 905-911.	0.9	2
62	Synthesis, Structure, and Explosive Properties of a New Trinitrate Derivative of an Unexpected Condensation Product of Nitromethane with Glyoxal. Propellants, Explosives, Pyrotechnics, 2012, 37, 261-266.	1.0	6
63	Structurally tailored carbon xerogels produced through a sol–gel process in a water–methanol–inorganic salt solution. Journal of Sol-Gel Science and Technology, 2011, 58, 102-113.	1.1	26
64	Influence of 1,2,4,5-tetrazine derivatives on growth of bacterial consortium isolated from soil. Chemistry and Ecology, 2011, 27, 57-68.	0.6	7
65	Hexachloroethane as an efficient oxidizer in combustion synthesis of carbonaceous and ceramic nanostructures. International Journal of Self-Propagating High-Temperature Synthesis, 2010, 19, 28-33.	0.2	1
66	Self-sustaining high-temperature synthesis of carbon-encapsulated magnetic nanoparticles from organic and inorganic metal precursors. New Carbon Materials, 2010, 25, 81-88.	2.9	7
67	Combustion synthesis of hollow carbon fibers. International Journal of Self-Propagating High-Temperature Synthesis, 2008, 17, 106-111.	0.2	6
68	Combustion Reactions of Poly(Carbon Monofluoride), (CF)n, with Different Reductants and Characterization of the Products. Propellants, Explosives, Pyrotechnics, 2007, 32, 149-154.	1.0	21
69	Surface properties of carbons obtained from hexachlorobenzene and hexachloroethane by combustion synthesis. Carbon, 2007, 45, 103-109.	5.4	16
70	Quasi one-dimensional ceramic nanostructures spontaneously formed by combustion synthesis. Physica Status Solidi (B): Basic Research, 2006, 243, 3297-3300.	0.7	10
71	Combustion Synthesis as a Novel Method for Production of 1-D SiC Nanostructures ChemInform, 2005, 36, no.	0.1	0
72	Combustion Synthesis as a Novel Method for Production of 1-D SiC Nanostructures. Journal of Physical Chemistry B, 2005, 109, 16244-16251.	1.2	101