James T Murray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5711411/publications.pdf

Version: 2024-02-01

236833 377752 6,894 37 25 34 citations h-index g-index papers 38 38 38 17221 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Proteinâ€carbohydrate ingestion alters Vps34 cellular localization independent of changes in kinase activity in human skeletal muscle. Experimental Physiology, 2020, 105, 2178-2189.	0.9	7
2	Cold Atmospheric Plasma induces accumulation of lysosomes and caspase-independent cell death in U373MG glioblastoma multiforme cells. Scientific Reports, 2019, 9, 12891.	1.6	36
3	Induction of the cell survival kinase Sgk1: A possible novel mechanism for α-phenyl-N-tert-butyl nitrone in experimental stroke. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1111-1121.	2.4	8
4	Oncogenic Signalling through Mechanistic Target of Rapamycin (mTOR): A Driver of Metabolic Transformation and Cancer Progression. Cancers, 2018, 10, 5.	1.7	53
5	Mechanistic Target of Rapamycin (mTOR) in the Cancer Setting. Cancers, 2018, 10, 168.	1.7	4
6	Glucose represses dendritic cell-induced T cell responses. Nature Communications, 2017, 8, 15620.	5.8	116
7	Signalling mechanisms in autophagy: an introduction to the issue. Essays in Biochemistry, 2017, 61, 561-563.	2.1	3
8	Heat Inactivation of Garlic (<i>Allium sativum</i>) Extract Abrogates Growth Inhibition of HeLa Cells. Nutrition and Cancer, 2016, 68, 818-826.	0.9	3
9	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
10	Probing a 3,4′-bis-guanidinium diaryl derivative as an allosteric inhibitor of the Ras pathway. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4287-4292.	1.0	8
11	FLCN, a novel autophagy component, interacts with GABARAP and is regulated by ULK1 phosphorylation. Autophagy, 2014, 10, 1749-1760.	4.3	64
12	A role of autophagy in PTP4A3-driven cancer progression. Autophagy, 2014, 10, 1787-1800.	4.3	40
13	Ran GTPase in Nuclear Envelope Formation and Cancer Metastasis. Advances in Experimental Medicine and Biology, 2014, 773, 323-351.	0.8	42
14	TBX2 represses CST6 resulting in uncontrolled legumain activity to sustain breast cancer proliferation: a novel cancer-selective target pathway with therapeutic opportunities Oncotarget, 2014, 5, 1609-1620.	0.8	37
15	Nutrient ingestion increased mTOR signaling, but not hVps34 activity in human skeletal muscle after sprint exercise. Physiological Reports, 2013, 1, e00076.	0.7	12
16	The cell survival kinase <scp>SGK</scp> 1 and its targets <scp>FOXO</scp> 3a and <scp>NDRG</scp> 1 in aged human brain. Neuropathology and Applied Neurobiology, 2013, 39, 623-633.	1.8	40
17	Transcriptional up-regulation of ULK1 by ATF4 contributes to cancer cell survival. Biochemical Journal, 2013, 449, 389-400.	1.7	128
18	Impact of oncogenic driver mutations on feedback between the PI3K and MEK pathways in cancer cells. Bioscience Reports, 2012, 32, 413-422.	1.1	30

#	Article	IF	Citations
19	Ran Is a Potential Therapeutic Target for Cancer Cells with Molecular Changes Associated with Activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK Pathways. Clinical Cancer Research, 2012, 18, 380-391.	3.2	69
20	Phosphorylation of NDRG1 is temporally and spatially controlled during the cell cycle. Biochemical and Biophysical Research Communications, 2011, 411, 227-234.	1.0	41
21	Obatoclax induces Atg7-dependent autophagy independent of beclin-1 and BAX/BAK. Cell Death and Disease, 2010, 1, e108-e108.	2.7	78
22	SGK1 activity in Na+ absorbing airway epithelial cells monitored by assaying NDRG1-Thr346/356/366 phosphorylation. Pflugers Archiv European Journal of Physiology, 2009, 457, 1287-1301.	1.3	32
23	mVps34 is activated following highâ€resistance contractions. Journal of Physiology, 2009, 587, 253-260.	1.3	80
24	Abstract B30: Phosphorylation of câ€jun N terminal kinase (JNK) regulates induction of mitochondrial apoptosis by proâ€suvival BCLâ€⊋ antagoinist obatoclax. , 2009, , .		0
25	mVps34 is activated by an acute bout of resistance exercise. Biochemical Society Transactions, 2007, 35, 1314-1316.	1.6	30
26	Analysis of hVps34/hVps15 Interactions with Rab5 In Vivo and In Vitro. Methods in Enzymology, 2005, 403, 789-799.	0.4	8
27	hVps34 Is a Nutrient-regulated Lipid Kinase Required for Activation of p70 S6 Kinase. Journal of Biological Chemistry, 2005, 280, 33076-33082.	1.6	443
28	The respiratory syncytial virus small hydrophobic protein is phosphorylated via a mitogen-activated protein kinase p38-dependent tyrosine kinase activity during virus infection. Journal of General Virology, 2005, 86, 375-384.	1.3	34
29	Identification of different specificity requirements between SGK1 and PKBα. FEBS Letters, 2005, 579, 991-994.	1.3	45
30	Exploitation of KESTREL to identify NDRG family members as physiological substrates for SGK1 and GSK3. Biochemical Journal, 2004, 384, 477-488.	1.7	299
31	Identification of filamin C as a new physiological substrate of PKBα using KESTREL. Biochemical Journal, 2004, 384, 489-494.	1.7	41
32	Transforming Growth Factor \hat{l}^2 Activates Smad2 in the Absence of Receptor Endocytosis. Journal of Biological Chemistry, 2002, 277, 29363-29368.	1.6	82
33	Role of Rab5 in the Recruitment of hVps34/p150 to the Early Endosome. Traffic, 2002, 3, 416-427.	1.3	187
34	Mechanism of phosphatidylinositol 3-kinase-dependent increases in BAC1.2F5 macrophage-like cell density in response to M-CSF: Phosphatidylinositol 3-kinase inhibitors increase the rate of apoptosis rather than inhibit DNA synthesis. Inflammation Research, 2000, 49, 610-618.	1.6	15
35	Specific Requirement for the p85-p $110\hat{l}\pm$ Phosphatidylinositol 3-Kinase during Epidermal Growth Factor-stimulated Actin Nucleation in Breast Cancer Cells. Journal of Biological Chemistry, 2000, 275, 3741-3744.	1.6	77
36	Ndrg 1. The AFCS-nature Molecule Pages, 0, , .	0.2	1

#	Article	IF	CITATIONS
37	Ndrg2. The AFCS-nature Molecule Pages, 0, , .	0.2	0