
Elizabeth M Fozo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5711407/publications.pdf Version: 2024-02-01

<u>Ειιγλβετή Μ.Εογο</u>

#	Article	IF	CITATIONS
1	Improved Growth of Escherichia coli in Aminoglycoside Antibiotics by the <i>zor-orz</i> Toxin-Antitoxin System. Journal of Bacteriology, 2022, 204, JB0040721.	2.2	5
2	Enterococcus faecalis Readily Adapts Membrane Phospholipid Composition to Environmental and Genetic Perturbation. Frontiers in Microbiology, 2021, 12, 616045.	3.5	14
3	Removal of peptidoglycan and inhibition of active cellular processes leads to daptomycin tolerance in Enterococcus faecalis. PLoS ONE, 2021, 16, e0254796.	2.5	7
4	Induction of Daptomycin Tolerance in Enterococcus faecalis by Fatty Acid Combinations. Applied and Environmental Microbiology, 2020, 86, .	3.1	11
5	Second Harmonic Generation Spectroscopy of Membrane Probe Dynamics in Gram-Positive Bacteria. Biophysical Journal, 2019, 117, 1419-1428.	0.5	21
6	Expanding lipidomics coverage: effective ultra performance liquid chromatography-high resolution mass spectrometer methods for detection and quantitation of cardiolipin, phosphatidylglycerol, and lysyl-phosphatidylglycerol. Metabolomics, 2019, 15, 53.	3.0	18
7	Enterococcus faecalis Responds to Individual Exogenous Fatty Acids Independently of Their Degree of Saturation or Chain Length. Applied and Environmental Microbiology, 2018, 84, .	3.1	21
8	The 5Î,, UTR of the type I toxin ZorO can both inhibit and enhance translation. Nucleic Acids Research, 2017, 45, 4006-4020.	14.5	21
9	Microcystin-LR does not induce alterations to transcriptomic or metabolomic profiles of a model heterotrophic bacterium. PLoS ONE, 2017, 12, e0189608.	2.5	4
10	The Making and Taking of Lipids. Advances in Microbial Physiology, 2016, 69, 51-155.	2.4	32
11	Exogenous Fatty Acids Protect Enterococcus faecalis from Daptomycin-Induced Membrane Stress Independently of the Response Regulator LiaR. Applied and Environmental Microbiology, 2016, 82, 4410-4420.	3.1	38
12	The ZorO-OrzO type I toxin–antitoxin locus: repression by the OrzO antitoxin. Nucleic Acids Research, 2014, 42, 1930-1946.	14.5	29
13	sRNA Antitoxins: More than One Way to Repress a Toxin. Toxins, 2014, 6, 2310-2335.	3.4	45
14	Antimicrobial behavior of Cu-bearing Zr-based bulk metallic glasses. Materials Science and Engineering C, 2014, 39, 325-329.	7.3	27
15	Incorporation of Exogenous Fatty Acids Protects Enterococcus faecalis from Membrane-Damaging Agents. Applied and Environmental Microbiology, 2014, 80, 6527-6538.	3.1	60
16	Novel Type I Toxin-Antitoxins Loci. , 2013, , 27-43.		0
17	New type I toxin-antitoxin families from "wild―and laboratory strains of <i>E. coli</i> . RNA Biology, 2012, 9, 1504-1512.	3.1	38
18	RNase III Participates in GadY-Dependent Cleavage of the gadX-gadW mRNA. Journal of Molecular Biology, 2011, 406, 29-43.	4.2	101

Elizabeth M Fozo

#	Article	IF	CITATIONS
19	Abundance of type I toxin–antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Research, 2010, 38, 3743-3759.	14.5	237
20	Repression of small toxic protein synthesis by the Sib and OhsC small RNAs. Molecular Microbiology, 2008, 70, 1076-1093.	2.5	166
21	Repression of small toxic protein synthesis by the Sib and OhsC small RNAs. Molecular Microbiology, 2008, 70, 1305-1305.	2.5	1
22	Small Toxic Proteins and the Antisense RNAs That Repress Them. Microbiology and Molecular Biology Reviews, 2008, 72, 579-589.	6.6	222
23	Varied functions of small, nonâ€coding RNAs in bacteria. FASEB Journal, 2008, 22, 97.2.	0.5	0
24	Role of Unsaturated Fatty Acid Biosynthesis in Virulence of Streptococcus mutans. Infection and Immunity, 2007, 75, 1537-1539.	2.2	58
25	The fabM Gene Product of Streptococcus mutans Is Responsible for the Synthesis of Monounsaturated Fatty Acids and Is Necessary for Survival at Low pH. Journal of Bacteriology, 2004, 186, 4152-4158.	2.2	111
26	Shifts in the Membrane Fatty Acid Profile of <i>Streptococcus mutans</i> Enhance Survival in Acidic Environmental Microbiology, 2004, 70, 929-936.	3.1	189
27	Low pH-induced membrane fatty acid alterations in oral bacteria. FEMS Microbiology Letters, 2004, 238, 291-295.	1.8	107
28	Low pH-induced membrane fatty acid alterations in oral bacteria. FEMS Microbiology Letters, 2004, 238, 291-295.	1.8	60
29	Gonococcal Nitric Oxide Reductase Is Encoded by a Single Gene, norB , Which Is Required for Anaerobic Growth and Is Induced by Nitric Oxide. Infection and Immunity, 2000, 68, 5241-5246.	2.2	89