
Frederick M Ausubel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5711213/publications.pdf Version: 2024-02-01

EDEDLOK M AUSUREL

#	Article	IF	CITATIONS
1	MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 2002, 415, 977-983.	13.7	2,407
2	lsochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 2001, 414, 562-565.	13.7	2,029
3	A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant Journal, 1993, 4, 403-410.	2.8	1,573
4	Glucosinolate Metabolites Required for an <i>Arabidopsis</i> Innate Immune Response. Science, 2009, 323, 95-101.	6.0	1,037
5	An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2833-2838.	3.3	918
6	Are innate immune signaling pathways in plants and animals conserved?. Nature Immunology, 2005, 6, 973-979.	7.0	844
7	A general method for site-directed mutagenesis in prokaryotes. Nature, 1981, 289, 85-88.	13.7	770
8	A Conserved p38 MAP Kinase Pathway in Caenorhabditis elegans Innate Immunity. Science, 2002, 297, 623-626.	6.0	746
9	Molecular Mechanisms of Bacterial Virulence Elucidated Using a Pseudomonas aeruginosa– Caenorhabditis elegans Pathogenesis Model. Cell, 1999, 96, 47-56.	13.5	721
10	The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell, 1994, 78, 1089-1099.	13.5	689
11	Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell, 1988, 53, 127-136.	13.5	683
12	Programmed cell death in plants: A pathogen-triggered response activated coordinately with multiple defense functions. Cell, 1994, 77, 551-563.	13.5	658
13	p38 MAPK Regulates Expression of Immune Response Genes and Contributes to Longevity in C. elegans. PLoS Genetics, 2006, 2, e183.	1.5	573
14	The Apoplastic Oxidative Burst Peroxidase in <i>Arabidopsis</i> Is a Major Component of Pattern-Triggered Immunity Â. Plant Cell, 2012, 24, 275-287.	3.1	547
15	Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant Journal, 1995, 8, 659-671.	2.8	545
16	Innate Immune Responses Activated in <i>Arabidopsis</i> Roots by Microbe-Associated Molecular Patterns Â. Plant Cell, 2010, 22, 973-990.	3.1	532
17	Long-Lived C. elegans daf-2 Mutants Are Resistant to Bacterial Pathogens. Science, 2003, 300, 1921-1921.	6.0	528
18	Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant Journal, 2006, 47, 851-863.	2.8	520

#	Article	IF	CITATIONS
19	Isolation of Arabidopsis Mutants With Enhanced Disease Susceptibility by Direct Screening. Genetics, 1996, 143, 973-982.	1.2	520
20	Overview of Nextâ€Generation Sequencing Technologies. Current Protocols in Molecular Biology, 2018, 122, e59.	2.9	519
21	Positive Correlation between Virulence ofPseudomonas aeruginosa Mutants in Mice and Insects. Journal of Bacteriology, 2000, 182, 3843-3845.	1.0	475
22	Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2 , but not SID2 , EDS5 or PAD4. Plant Journal, 2003, 35, 193-205.	2.8	463
23	Roles of Salicylic Acid, Jasmonic Acid, and Ethylene in cpr-Induced Resistance in Arabidopsis. Plant Cell, 2000, 12, 2175-2190.	3.1	407
24	Resistance to Botrytis cinerea Induced in Arabidopsis by Elicitors Is Independent of Salicylic Acid, Ethylene, or Jasmonate Signaling But Requires PHYTOALEXIN DEFICIENT3 Â. Plant Physiology, 2007, 144, 367-379.	2.3	383
25	Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nature Reviews Immunology, 2010, 10, 47-58.	10.6	359
26	Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nature Plants, 2015, 1, .	4.7	345
27	Phytoalexin-Deficient Mutants of Arabidopsis Reveal That <i>PAD4</i> Encodes a Regulatory Factor and That Four <i>PAD</i> Genes Contribute to Downy Mildew Resistance. Genetics, 1997, 146, 381-392.	1.2	332
28	Prospects for plant-derived antibacterials. Nature Biotechnology, 2006, 24, 1504-1507.	9.4	324
29	Fumonisin B1–Induced Cell Death in Arabidopsis Protoplasts Requires Jasmonate-, Ethylene-, and Salicylate-Dependent Signaling Pathways. Plant Cell, 2000, 12, 1823-1835.	3.1	313
30	Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Current Biology, 2000, 10, 1539-1542.	1.8	311
31	A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature, 2018, 556, 103-107.	13.7	307
32	Nonlinear partial differential equations and applications: Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15675-15680.	3.3	300
33	RESISTANCE TO FUSARIUM OXYSPORUM 1, a Dominant Arabidopsis Disease-Resistance Gene, Is Not Race Specific. Genetics, 2005, 171, 305-321.	1.2	299
34	Distinct Pathogenesis and Host Responses during Infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathogens, 2010, 6, e1000982.	2.1	297
35	Caenorhabditis elegans as a Model Host for Staphylococcus aureus Pathogenesis. Infection and Immunity, 2003, 71, 2208-2217.	1.0	290
36	Antifungal Chemical Compounds Identified Using a C. elegans Pathogenicity Assay. PLoS Pathogens, 2007, 3, e18.	2.1	285

#	Article	IF	CITATIONS
37	Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant Journal, 1993, 4, 327-341.	2.8	273
38	The worm has turned – microbial virulence modeled in Caenorhabditis elegans. Trends in Microbiology, 2005, 13, 119-127.	3.5	266
39	Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nature Genetics, 1999, 23, 203-207.	9.4	260
40	Identification of novel antimicrobials using a live-animal infection model. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10414-10419.	3.3	260
41	Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1791-1796.	3.3	256
42	Cloning of Rhizobium meliloti nodulation genes by direct complementation of Nodâ^' mutants. Nature, 1982, 298, 485-488.	13.7	249
43	Use of the Galleria mellonella Caterpillar as a Model Host To Study the Role of the Type III Secretion System in Pseudomonas aeruginosa Pathogenesis. Infection and Immunity, 2003, 71, 2404-2413.	1.0	233
44	Correlation of defense gene induction defects with powdery mildew susceptibility inArabidopsisenhanced disease susceptibility mutants. Plant Journal, 1998, 16, 473-485.	2.8	232
45	The AtrbohD-Mediated Oxidative Burst Elicited by Oligogalacturonides in Arabidopsis Is Dispensable for the Activation of Defense Responses Effective against <i>Botrytis cinerea</i> Â Â. Plant Physiology, 2008, 148, 1695-1706.	2.3	232
46	Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen. Plant Journal, 2000, 24, 205-218.	2.8	230
47	Directed transposon Tn5 mutagenesis and complementation analysis of rhizobium meliloti symbiotic nitrogen fixation genes. Cell, 1982, 29, 551-559.	13.5	228
48	A Simple Procedure for the Analysis of Single Nucleotide Polymorphisms Facilitates Map-Based Cloning in Arabidopsis. Plant Physiology, 2000, 124, 1483-1492.	2.3	227
49	Caenorhabditis elegans Innate Immune Response Triggered by Salmonella enterica Requires Intact LPS and Is Mediated by a MAPK Signaling Pathway. Current Biology, 2003, 13, 47-52.	1.8	221
50	Microsporidia Are Natural Intracellular Parasites of the Nematode Caenorhabditis elegans. PLoS Biology, 2008, 6, e309.	2.6	218
51	A copia-like transposable element family in Arabidopsis thaliana. Nature, 1988, 336, 242-244.	13.7	217
52	Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6593-6598.	3.3	206
53	Simulation of Fungal-Mediated Cell Death by Fumonisin B1 and Selection of Fumonisin B1–Resistant (fbr) Arabidopsis Mutants. Plant Cell, 2000, 12, 1811-1822.	3.1	203
54	Mitophagy confers resistance to siderophore-mediated killing by <i>Pseudomonas aeruginosa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1821-1826.	3.3	195

#	Article	IF	CITATIONS
55	Virulence Effect of Enterococcus faecalis Protease Genes and the Quorum-Sensing Locus fsr in Caenorhabditis elegans and Mice. Infection and Immunity, 2002, 70, 5647-5650.	1.0	192
56	High-Throughput Screen for Novel Antimicrobials using a Whole Animal Infection Model. ACS Chemical Biology, 2009, 4, 527-533.	1.6	191
57	A Peroxidase-Dependent Apoplastic Oxidative Burst in Cultured Arabidopsis Cells Functions in MAMP-Elicited Defense Â. Plant Physiology, 2012, 158, 2013-2027.	2.3	189
58	Pathogen-secreted proteases activate a novel plant immune pathway. Nature, 2015, 521, 213-216.	13.7	183
59	Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5533-5538.	3.3	179
60	Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts. Molecular Microbiology, 2000, 37, 981-988.	1.2	178
61	Pseudomonas aeruginosa Disrupts Caenorhabditis elegans Iron Homeostasis, Causing a Hypoxic Response and Death. Cell Host and Microbe, 2013, 13, 406-416.	5.1	178
62	Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans. PLoS Pathogens, 2013, 9, e1003101.	2.1	178
63	A Rhizobium meliloti symbiotic regulatory gene. Cell, 1984, 36, 1035-1043.	13.5	174
64	Regulation of nitrogen metabolism genes by nifA gene product in Klebsiella pneumoniae. Nature, 1983, 301, 307-313.	13.7	171
65	Host Translational Inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an Immune Response in Caenorhabditis elegans. Cell Host and Microbe, 2012, 11, 364-374.	5.1	171
66	Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium. Current Opinion in Immunology, 2012, 24, 3-9.	2.4	167
67	Mutational Analysis of the Arabidopsis Nucleotide Binding Site–Leucine-Rich Repeat Resistance Gene RPS2. Plant Cell, 2000, 12, 2541-2554.	3.1	166
68	Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10990-10994.	3.3	162
69	Caenorhabditis elegans as a host for the study of host–pathogen interactions. Current Opinion in Microbiology, 2002, 5, 97-101.	2.3	155
70	Influence of maternal breast milk ingestion on acquisition of the intestinal microbiome in preterm infants. Microbiome, 2016, 4, 68.	4.9	155
71	Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature, 2005, 434, 217-221.	13.7	154
72	Exploiting Amoeboid and Non-Vertebrate Animal Model Systems to Study the Virulence of Human Pathogenic Fungi. PLoS Pathogens, 2007, 3, e101.	2.1	154

#	Article	IF	CITATIONS
73	Genome-Wide Identification of Pseudomonas aeruginosa Virulence-Related Genes Using a Caenorhabditis elegans Infection Model. PLoS Pathogens, 2012, 8, e1002813.	2.1	153
74	The Caenorhabditis elegans MAPK phosphatase VHP-1 mediates a novel JNK-like signaling pathway in stress response. EMBO Journal, 2004, 23, 2226-2234.	3.5	150
75	Models of Caenorhabditis elegans Infection by Bacterial and Fungal Pathogens. , 2008, 415, 403-427.		150
76	bZIP transcription factor <i>zip-2</i> mediates an early response to <i>Pseudomonas aeruginosa</i> infection in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2153-2158.	3.3	146
77	Candida albicans Infection of Caenorhabditis elegans Induces Antifungal Immune Defenses. PLoS Pathogens, 2011, 7, e1002074.	2.1	131
78	Klebsiella pneumoniae nifA product activates the Rhizobium meliloti nitrogenase promoter. Nature, 1983, 301, 728-732.	13.7	130
79	Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans. Current Opinion in Immunology, 2005, 17, 4-10.	2.4	128
80	Repurposing Salicylanilide Anthelmintic Drugs to Combat Drug Resistant Staphylococcus aureus. PLoS ONE, 2015, 10, e0124595.	1.1	123
81	Pathogenesis of the Human Opportunistic PathogenPseudomonas aeruginosa PA14 in Arabidopsis. Plant Physiology, 2000, 124, 1766-1774.	2.3	118
82	A selective membrane-targeting repurposed antibiotic with activity against persistent methicillin-resistant <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16529-16534.	3.3	117
83	The G protein-coupled receptor FSHR-1 is required for the <i>Caenorhabditis elegans</i> innate immune response. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2782-2787.	3.3	115
84	The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1063-1068.	3.3	113
85	Role for β-catenin and HOX transcription factors in <i>Caenorhabditis elegans</i> and mammalian host epithelial-pathogen interactions. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17469-17474.	3.3	108
86	Signals Involved in Arabidopsis Resistance toTrichoplusia ni Caterpillars Induced by Virulent and Avirulent Strains of the Phytopathogen Pseudomonas syringae. Plant Physiology, 2002, 129, 551-564.	2.3	98
87	The roles of mucD and alginate in the virulence of Pseudomonas aeruginosa in plants, nematodes and mice. Molecular Microbiology, 2008, 41, 1063-1076.	1.2	98
88	The TASTY Locus on Chromosome 1 of Arabidopsis Affects Feeding of the Insect Herbivore Trichoplusia ni. Plant Physiology, 2001, 126, 890-898.	2.3	96
89	Conjugating Berberine to a Multidrug Resistance Pump Inhibitor Creates an Effective Antimicrobial. ACS Chemical Biology, 2006, 1, 594-600.	1.6	94
90	Pseudomonas aeruginosa PA14 Pathogenesis in Caenorhabditis elegans. Methods in Molecular Biology, 2014, 1149, 653-669.	0.4	91

#	Article	IF	CITATIONS
91	DAF-16-Dependent Suppression of Immunity During Reproduction in <i>Caenorhabditis elegans</i> . Genetics, 2008, 178, 903-918.	1.2	90
92	Identification of Antifungal Compounds Active against Candida albicans Using an Improved High-Throughput Caenorhabditis elegans Assay. PLoS ONE, 2009, 4, e7025.	1.1	87
93	Whole Animal Automated Platform for Drug Discovery against Multi-Drug Resistant Staphylococcus aureus. PLoS ONE, 2014, 9, e89189.	1.1	85
94	High intensity and blue light regulated expression of chimeric chalcone synthase genes in transgenic Arabidopsis thaliana plants. Molecular Genetics and Genomics, 1991, 226, 449-56.	2.4	83
95	Stimulation of Host Immune Defenses by a Small Molecule Protects C. elegans from Bacterial Infection. PLoS Genetics, 2012, 8, e1002733.	1.5	81
96	Jasmonate signalling in Arabidopsis involves SGT1b–HSP70–HSP90 chaperone complexes. Nature Plants, 2015, 1, .	4.7	78
97	Trehalose Biosynthesis Promotes Pseudomonas aeruginosa Pathogenicity in Plants. PLoS Pathogens, 2013, 9, e1003217.	2.1	76
98	Cytotoxicity of Hydrogen Peroxide Produced by Enterococcus faecium. Infection and Immunity, 2004, 72, 4512-4520.	1.0	74
99	Isolation of New Arabidopsis Mutants With Enhanced Disease Susceptibility to Pseudomonas syringae by Direct Screening. Genetics, 1998, 149, 537-548.	1.2	74
100	Mining the plant–herbivore interface with a leafmining <i>Drosophila</i> of <i>Arabidopsis</i> . Molecular Ecology, 2011, 20, 995-1014.	2.0	68
101	Temporal Global Expression Data Reveal Known and Novel Salicylate-Impacted Processes and Regulators Mediating Powdery Mildew Growth and Reproduction on Arabidopsis Â. Plant Physiology, 2009, 149, 1435-1451.	2.3	64
102	Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae. Phytochemistry, 2015, 112, 110-121.	1.4	60
103	Investment in secreted enzymes during nutrient-limited growth is utility dependent. Proceedings of the United States of America, 2017, 114, E7796-E7802.	3.3	60
104	Rhizosphereâ€associated <i>Pseudomonas</i> induce systemic resistance to herbivores at the cost of susceptibility to bacterial pathogens. Molecular Ecology, 2018, 27, 1833-1847.	2.0	58
105	Genes Involved in the Evolution of Herbivory by a Leaf-Mining, Drosophilid Fly. Genome Biology and Evolution, 2012, 4, 900-916.	1.1	57
106	Identification of an Antimicrobial Agent Effective against Methicillin-Resistant Staphylococcus aureus Persisters Using a Fluorescence-Based Screening Strategy. PLoS ONE, 2015, 10, e0127640.	1.1	57
107	Powdery mildew pathogenesis of <i>Arabidopsis thaliana</i> . Mycologia, 1998, 90, 1009-1016.	0.8	54
108	Characterization of the integrated filamentous phage Pf5 and its involvement in small-colony formation. Microbiology (United Kingdom), 2007, 153, 1790-1798.	0.7	54

#	Article	IF	CITATIONS
109	Anther Culture of Petunia: Genotypes with High Frequency of Callus, Root, or Plantlet Formation. Zeitschrift Für Pflanzenphysiologie, 1980, 100, 131-145.	1.4	52
110	Insect-Derived Cecropins Display Activity against Acinetobacter baumannii in a Whole-Animal High-Throughput Caenorhabditis elegans Model. Antimicrobial Agents and Chemotherapy, 2015, 59, 1728-1737.	1.4	52
111	Isolation of Arabidopsis Genes That Differentiate between Resistance Responses Mediated by the RPS2 and RPM1 Disease Resistance Genes. Plant Cell, 1996, 8, 241.	3.1	49
112	The Evolutionarily Conserved Mediator Subunit MDT-15/MED15 Links Protective Innate Immune Responses and Xenobiotic Detoxification. PLoS Pathogens, 2014, 10, e1004143.	2.1	49
113	Attenuation of Pseudomonas aeruginosa virulence by medicinal plants in a Caenorhabditis elegans model system. Journal of Medical Microbiology, 2008, 57, 809-813.	0.7	48
114	Both live and dead <i>Enterococci</i> activate <i>Caenorhabditis elegans</i> host defense via immune and stress pathways. Virulence, 2018, 9, 683-699.	1.8	48
115	A new antibiotic with potent activity targets MscL. Journal of Antibiotics, 2015, 68, 453-462.	1.0	46
116	Enterococcus infection biology: Lessons from invertebrate host models. Journal of Microbiology, 2014, 52, 200-210.	1.3	44
117	Highâ€Throughput Screening for Novel Antiâ€Infectives Using a C. elegans Pathogenesis Model. Current Protocols in Chemical Biology, 2014, 6, 25-37.	1.7	42
118	Plant microbiome blueprints. Science, 2015, 349, 788-789.	6.0	42
119	Pathogen-Triggered Ethylene Signaling Mediates Systemic-Induced Susceptibility to Herbivory in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 4755-4766.	3.1	41
120	Nodules elicited by Rbizobium meliloti heme mutants are arrested at an early stage of development. Molecular Genetics and Genomics, 1991, 230, 423-432.	2.4	39
121	NH125 kills methicillin-resistant <i>Staphylococcus aureus</i> persisters by lipid bilayer disruption. Future Medicinal Chemistry, 2016, 8, 257-269.	1.1	36
122	Tribbles ortholog NIPI-3 and bZIP transcription factor CEBP-1 regulate a Caenorhabditis elegans intestinal immune surveillance pathway. BMC Biology, 2016, 14, 105.	1.7	35
123	A light-independent developmental mechanism potentiates flavonoid gene expression in Arabidopsis seedlings. Plant Molecular Biology, 1998, 37, 217-223.	2.0	34
124	Recombinant P4 bacteriophages propagate as viable lytic phages or as autonomous plasmids in Klebsiella pneumoniae. Molecular Genetics and Genomics, 1980, 180, 165-175.	2.4	33
125	Discovery and Optimization of nTZDpa as an Antibiotic Effective Against Bacterial Persisters. ACS Infectious Diseases, 2018, 4, 1540-1545.	1.8	33
126	The Pseudomonas aeruginosa accessory genome elements influence virulence towards Caenorhabditis elegans. Genome Biology, 2019, 20, 270.	3.8	33

#	Article	IF	CITATIONS
127	Powdery Mildew Pathogenesis of Arabidopsis thaliana. Mycologia, 1998, 90, 1009.	0.8	32
128	An Antipersister Strategy for Treatment of Chronic Pseudomonas aeruginosa Infections. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	32
129	A Defensin from the Model Beetle Tribolium castaneum Acts Synergistically with Telavancin and Daptomycin against Multidrug Resistant Staphylococcus aureus. PLoS ONE, 2015, 10, e0128576.	1.1	32
130	Berberine-INF55 (5-Nitro-2-Phenylindole) Hybrid Antimicrobials: Effects of Varying the Relative Orientation of the Berberine and INF55 Components. Antimicrobial Agents and Chemotherapy, 2010, 54, 3219-3224.	1.4	31
131	Directive segregation is the basis of ColE1 plasmid incompatibility. Nature, 1979, 281, 447-452.	13.7	29
132	Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance. Frontiers in Plant Science, 2016, 7, 227.	1.7	25
133	Radiochemical Purification of Bacteriophage λ Integrase. Nature, 1974, 247, 152-154.	13.7	24
134	The Neutrally Charged Diarylurea Compound PQ401 Kills Antibiotic-Resistant and Antibiotic-Tolerant Staphylococcus aureus. MBio, 2020, 11, .	1.8	23
135	Characterization of a Francisella tularensis-Caenorhabditis elegans Pathosystem for the Evaluation of Therapeutic Compounds. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	21
136	Quorumâ€sensing regulator RhlR but not its autoinducer Rhll enables <i>Pseudomonas</i> to evade opsonization. EMBO Reports, 2018, 19, .	2.0	21
137	Pseudomonas syringae enhances herbivory by suppressing the reactive oxygen burst in Arabidopsis. Journal of Insect Physiology, 2016, 84, 90-102.	0.9	19
138	Innate immunity in plants and animals: Differences and similarities. Biochemist, 2014, 36, 40-45.	0.2	17
139	Intraspecific genetic variation in cytokinin-controlled shoot morphogenesis from tissue explants of Petunia hybrida. Plant Science Letters, 1984, 35, 237-245.	1.9	14
140	On the Mechanism of Berberine–INF55 (5-Nitro-2-phenylindole) Hybrid Antibacterials. Australian Journal of Chemistry, 2014, 67, 1471.	0.5	14
141	Antibacterial properties of 3-(phenylsulfonyl)-2-pyrazinecarbonitrile. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5203-5207.	1.0	14
142	Nextâ€Gen Sequencingâ€Based Mapping and Identification of Ethyl Methanesulfonateâ€Induced Mutations in <i>Arabidopsis thaliana</i> . Current Protocols in Molecular Biology, 2014, 108, 7.18.1-16.	2.9	11
143	Generation of Fluorinated Amychelin Siderophores against Pseudomonas aeruginosa Infections by a Combination of Genome Mining and Mutasynthesis. Cell Chemical Biology, 2020, 27, 1532-1543.e6.	2.5	9
144	Characterization of Five Novel Anti-MRSA Compounds Identified Using a Whole-Animal Caenorhabditis elegans/Galleria mellonella Sequential-Screening Approach. Antibiotics, 2020, 9, 449.	1.5	9

#	Article	IF	CITATIONS
145	Animal models for host–pathogen interactions. Current Opinion in Microbiology, 2008, 11, 249-250.	2.3	8
146	Tracing My Roots: How I Became a Plant Biologist. Annual Review of Genetics, 2018, 52, 1-20.	3.2	8
147	In the Model Host Caenorhabditis elegans, Sphingosine-1-Phosphate-Mediated Signaling Increases Immunity toward Human Opportunistic Bacteria. International Journal of Molecular Sciences, 2020, 21, 7813.	1.8	8
148	Enhancing immunity by engineering DAMPs. Oncotarget, 2015, 6, 28523-28524.	0.8	7
149	Introduction to Gene Editing and Manipulation Using CRISPR/Cas9 Technology. Current Protocols in Molecular Biology, 2016, 115, 31.4.1-31.4.6.	2.9	6
150	Antimicrobial activity of the membrane-active compound nTZDpa is enhanced at low pH. Biomedicine and Pharmacotherapy, 2022, 150, 112977.	2.5	6
151	Replication of the Ordered, Nonredundant Library of Pseudomonas aeruginosa strain PA14 Transposon Insertion Mutants. Journal of Visualized Experiments, 2018, , .	0.2	5
152	Twists and Turns: My Career Path and Concerns About the Future. Genetics, 2014, 198, 431-434.	1.2	3
153	Introduction and Historical Overview of DNA Sequencing. Current Protocols in Molecular Biology, 2011, 96, 7.0.1.	2.9	1
154	Cloning Arabidopsis genes by genomic subtraction. , 1992, , 331-341.		1
155	Combining Genomic Tools to Dissect Multifactorial Virulence in Pseudomonas aeruginosa. , 2008, , 127-150.		1
156	DNA Sequencing Strategies. Current Protocols in Molecular Biology, 1999, 46, 7.1.1.	2.9	0
157	A High Throughput Amenable Arabidopsis-P. aeruginosa System Reveals a Rewired Regulatory Module and the Utility to Identify Potent Anti-Infectives. PLoS ONE, 2011, 6, e16381.	1.1	0
158	Heterologous Hosts and the Evolution and Study of Fungal Pathogenesis. , 0, , 213-225.		0
159	Modeling Microbial Virulence in a Genomic Era: Impact of Shared Genomic Tools and Data Sets. , 0, , 213-231.		0