
Raquel B GÃ³mez-Coca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5710240/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oil From Three Aguaje Morphotypes (Mauritia flexuosa L.f.) Extracted by Supercritical Fluid With CO2: Chemical Composition and Chromatic Properties. Frontiers in Sustainable Food Systems, 2022, 6, .	3.9	4
2	Fatty acid ethyl esters (FAEE) in virgin olive oil: A shorter and full validated approach as an alternative to the EU Official Method. Food Chemistry, 2022, 394, 133300.	8.2	1
3	Comparison of Four Oil Extraction Methods for Sinami Fruit (Oenocarpus mapora H. Karst): Evaluating Quality, Polyphenol Content and Antioxidant Activity. Foods, 2022, 11, 1518.	4.3	7
4	Characterization of kabylian virgin olive oils according to fatty alcohols, waxes, and fatty acid alkyl esters. Journal of Food Measurement and Characterization, 2021, 15, 4960.	3.2	2
5	Pyropheophytin a in Soft Deodorized Olive Oils. Foods, 2020, 9, 978.	4.3	6
6	Olive oil mixtures. Part two: Detection of soft deodorized oil in extra virgin olive oil through diacylglycerol determination. Relationship with free acidity. Food Chemistry, 2020, 330, 127226.	8.2	9
7	Olive oil mixtures. Part one: Decisional trees or how to verify the olive oil percentage in declared blends. Food Chemistry, 2020, 315, 126235.	8.2	7
8	Glyceridic and Unsaponifiable Components of Microencapsulated Sacha Inchi (Plukenetia) Tj ETQq0 0 0 rgBT /Ov	erlogk 10 ⁻	Tf 50 462 Td

9	Chemical characterization of commercial and single-variety avocado oils. Grasas Y Aceites, 2018, 69, 256.	0.9	17
10	Chemical Characterization of Major and Minor Compounds of Nut Oils: Almond, Hazelnut, and Pecan Nut. Journal of Chemistry, 2017, 2017, 1-11.	1.9	58
11	Saturated hydrocarbon content in olive fruits and crude olive pomace oils. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 391-402.	2.3	19
12	Fatty acid ethyl esters (FAEE) in extra virgin olive oil: A case study of a quality parameter. LWT - Food Science and Technology, 2016, 66, 378-383.	5.2	30
13	Determination of saturated aliphatic hydrocarbons in vegetable oils. Grasas Y Aceites, 2016, 67, e127.	0.9	9
14	Sensory defects of virgin olive oil from a microbiological perspective. Trends in Food Science and Technology, 2015, 43, 227-235.	15.1	22
15	Solution properties of metal ion complexes formed with the antiviral and cytostatic nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]-2-amino-6-dimethylaminopurine (PME2A6DMAP). Canadian Journal of Chemistry, 2014, 92, 771-780.	1.1	6

16 Characterization of Glyceridic and Unsaponifiable Compounds of Sacha Inchi (Plukenetia) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 142 Td

17	Analysis of methanol and ethanol in virgin olive oil. MethodsX, 2014, 1, 207-211.	1.6	11
18	Comparative Study of Phytosterol Derivatives in Monovarietal Olive Oils. Journal of Agricultural and Food Chemistry, 2014, 62, 5669-5674.	5.2	7

#	Article	IF	CITATIONS
19	On the glucoside analysis: Simultaneous determination of free and esterified steryl glucosides in olive oil. Detailed analysis of standards as compulsory first step. Food Chemistry, 2013, 141, 1273-1280.	8.2	19
20	Specific procedure for analysing steryl glucosides in olive oil. European Journal of Lipid Science and Technology, 2012, 114, 1417-1426.	1.5	15
21	Fatty acid alkyl esters presence in olive oil vs. organoleptic assessment. Food Chemistry, 2012, 135, 1205-1209.	8.2	39
22	Extent of Intramolecular <i>Ï€</i> â€Stacks in Aqueous Solution in Mixedâ€Ligand Copper(II) Complexes Formed by Heteroaromatic Amines and Several 2â€Aminopurine Derivatives of the Antivirally Active Nucleotide Analog 9â€{2â€(Phosphonomethoxy)ethyl]adenine (PMEA). Chemistry and Biodiversity, 2012, 9, 2008-2034.	2.1	12
23	Waxy fraction containing long-chain aliphatic aldehydes in virgin olive oils. Food Chemistry, 2012, 132, 1451-1456.	8.2	7
24	Nickel(II), Copper(II) and Zinc(II) Complexes of 9-[2- (Phosphonomethoxy)ethyl]-8-azaadenine (9,8aPMEA), the 8-Aza Derivative of the Antiviral Nucleotide Analogue 9-[2-(Phosphonomethoxy)ethyl] adenine (PMEA). Quantification of Four Isomeric Species in Aqueous Solution. Bioinorganic Chemistry and Applications, 2004, 2, 331-352 Chantification of Isomeric equilibria formed by metal ion complexes of	4.1	10
25	Qualitification of isometic equilibria formed by metal ion complexes of 8-[2-(phosphonomethoxy)ethyl]-8-azaadenine (8,8aPMEA) and 9-[2-(phosphonomethoxy)ethyl]-8-azaadenine (9,8aPMEA). Derivatives of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). Journal of Biological Inorganic Chemistry,	2.6	12
26	Metal Ion-Binding Properties of (1H-Benzimidazol-2-yl-methyl)phosphonate (Bimp2-) in Aqueous Solution.âS¥Isomeric Equilibria, Extent of Chelation, and a New Quantification Method for the Chelate Effect. Inorganic Chemistry, 2004, 43, 1311-1322.	4.0	52
27	Synthesis and acid–base properties of (1H-benzimidazol-2-yl-methyl)phosphonate (Bimp2â^'). Evidence for intramolecular hydrogen-bond formation in aqueous solution between (N-1)H and the phosphonate group. Organic and Biomolecular Chemistry, 2003, 1, 1819-1826.	2.8	19
28	Metal-ion binding properties of O-phosphonatomethylcholine (PMChâ^') Inorganica Chimica Acta, 2002, 331, 109-116.	2.4	15
29	Preliminary characterization of fast growing rhizobial strains isolated from soyabean nodules in Brazil. Soil Biology and Biochemistry, 2001, 33, 1349-1361.	8.8	82
30	Intramolecular stacking interactions in ternary copper(II) complexes1 formed with 2,2′-bipyridine or 1,10-phenanthroline and 9-(4-phosphonobutyl)adenine (dPMEA), the carba relative of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). Journal of Inorganic Biochemistry, 2001, 84, 39-46.	3.5	14
31	Ternary Copper(II) Complexes in Solution[1,2] Formed With 8-Aza Derivatives of the Antiviral Nucleotide Analogue 9-[2-(Phosphonomethoxy)Ethyl]Adenine (PMEA). Metal-Based Drugs, 2000, 7, 313-324.	3.8	14
32	Metal ion-binding properties of 9-(4-phosphonobutyl)adenine (dPMEA), a sister compound of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA), and quantification of the equilibria involving four Cu(PMEA) isomers. Dalton Transactions RSC, 2000, , 2077-2084.	2.3	30
33	On the Presence of Steryl Glucosides in Virgin Olive Oil and their Relationship with other Minor Compounds: Untangling the Skein. American Journal of Agricultural Science and Technology, 0, , .	0.0	1