Ryo Ishikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5709505/publications.pdf Version: 2024-02-01

RVO ISHIKANAA

#	Article	IF	CITATIONS
1	Highly efficient crystalline silicon/Zonyl fluorosurfactant-treated organic heterojunction solar cells. Applied Physics Letters, 2012, 100, .	3.3	102
2	Double resonance Raman modes in monolayer and few-layer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">MoTe<mml:mn>2</mml:mn></mml:mi </mml:msub>. Physical Review B, 2015, 91, .</mml:math 	3.2	99
3	Highly Efficient Solutionâ€Processed Poly(3,4â€ethylenedioâ€xythiophene):Poly(styrenesulfonate)/Crystalline–Silicon Heterojunction Solar Cells with Improved Lightâ€Induced Stability. Advanced Energy Materials, 2015, 5, 1500744.	19.5	85
4	Nafion-Modified PEDOT:PSS as a Transparent Hole-Transporting Layer for High-Performance Crystalline-Si/Organic Heterojunction Solar Cells with Improved Light Soaking Stability. ACS Applied Materials & Interfaces, 2016, 8, 31926-31934.	8.0	63
5	Optical anisotropy in solvent-modified poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) and its effect on the photovoltaic performance of crystalline silicon/organic heterojunction solar cells. Applied Physics Letters, 2013, 102, .	3.3	43
6	Thiocyanate Containing Two-Dimensional Cesium Lead Iodide Perovskite, Cs ₂ PbI ₂ (SCN) ₂ : Characterization, Photovoltaic Application, and Degradation Mechanism. ACS Applied Materials & Interfaces, 2018, 10, 42363-42371.	8.0	40
7	Green-tea modified multiwalled carbon nanotubes for efficient poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate)/n-silicon hybrid solar cell. Applied Physics Letters, 2013, 102, .	3.3	31
8	Nb-doped amorphous titanium oxide compact layer for formamidinium-based high efficiency perovskite solar cells by low-temperature fabrication. Journal of Materials Chemistry A, 2018, 6, 9583-9591.	10.3	30
9	Efficient Crystalline Si/Poly(ethylene dioxythiophene):Poly(styrene sulfonate):Graphene Oxide Composite Heterojunction Solar Cells. Applied Physics Express, 2012, 5, 032301.	2.4	28
10	Barium hydroxide hole blocking layer for front- and back-organic/crystalline Si heterojunction solar cells. Journal of Applied Physics, 2017, 122, .	2.5	26
11	Chemical mist deposition of graphene oxide and PEDOT:PSS films for crystalline Si/organic heterojunction solar cells. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2134-2137.	0.8	22
12	Crystalline-Si heterojunction with organic thin-layer (HOT) solar cell module using poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS). Solar Energy Materials and Solar Cells, 2018, 181, 60-70.	6.2	20
13	Efficient organic/polycrystalline silicon hybrid solar cells. Nano Energy, 2015, 11, 260-266.	16.0	18
14	Self-assembled silver nanowires as top electrode for poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate)/n-silicon solar cell. Thin Solid Films, 2014, 558, 306-310.	1.8	16
15	Improved efficiency of methylammonium-free perovskite thin film solar cells by fluorinated ammonium iodide treatment. Organic Electronics, 2020, 78, 105596.	2.6	15
16	Optical properties and carrier transport in c-Si/conductive PEDOT:PSS(GO) composite heterojunctions. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2075-2078.	0.8	13
17	Role of Isopropyl Alcohol Solvent in the Synthesis of Organic–Inorganic Halide CH(NH ₂) ₂ Pbl _{<i>x</i>} Br _{3–<i>x</i>} Perovskite Thin Films by a Two-Step Method. Journal of Physical Chemistry C, 2016, 120, 25371-25377.	3.1	12
18	Efficient Organic Photovoltaic Cells Using Hole-Transporting MoO3Buffer Layers Converted from Solution-Processed MoS2Films. Japanese Journal of Applied Physics, 2011, 50, 071604.	1.5	11

Ryo Ishikawa

#	Article	IF	CITATIONS
19	Efficient crystalline Si/organic hybrid heterojunction solar cells. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2101-2106.	0.8	8
20	Effect of substrate bias on mist deposition of conjugated polymer on textured crystalline‣i for efficient c‣i/organic heterojunction solar cells. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1922-1925.	1.8	8
21	Self assembled silver nanowire mesh as top electrode for organic–inorganic hybrid solar cell. Canadian Journal of Physics, 2014, 92, 867-870.	1.1	7
22	Fabrication of [CH(NH ₂) ₂] _{0.8} Cs _{0.2} PbI ₃ Perovskite Thin Films for n-i-p Planar-structure Solar Cells by a One-step Method Using 1-Cyclohexyl-2-pyrrolidone as an Additive. Chemistry Letters, 2018, 47, 905-908.	1.3	7
23	Highly crystalline large-grained perovskite films using two additives without an antisolvent for high-efficiency solar cells. Thin Solid Films, 2019, 679, 27-34.	1.8	7
24	Self-assembled Fluorinated Polymer Passivation Layer for Efficient Perovskite Thin-film Solar Cells. Chemistry Letters, 2020, 49, 87-90.	1.3	6
25	Electrospray Deposition of Poly(3-hexylthiophene) Films for Crystalline Silicon/Organic Hybrid Junction Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 061602.	1.5	5
26	Fabrication of {CH(NH ₂) ₂ } _{1â^'} <i>_x</i> Cs <i>_x</i> PbI _{3<!--<br-->Perovskite Thin Films by Two-step Method and Its Application to Thin Film Solar Cells. Chemistry Letters, 2017, 46, 612-615.}	sub> 1.3	5
27	Solution-Processed Crystalline Silicon Heterojunction Solar Cells. , 2019, , 97-117.		5
28	Solution-processed TiO ₂ as a hole blocking layer in PEDOT:PSS/n-Si heterojunction solar cells. EPJ Photovoltaics, 2020, 11, 7.	1.6	5
29	Crystalline Silicon/Graphene Oxide Hybrid Junction Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10NE22.	1.5	5
30	Efficient Organic Photovoltaic Cells Using MoO3Hole-Transporting Layers Prepared by Simple Spin-Cast of Its Dispersion Solution in Methanol. Japanese Journal of Applied Physics, 2013, 52, 020202.	1.5	4
31	Optical Anisotropy and Compositional Ratio of Conductive Polymer PEDOT:PSS and Their Effect on Photovoltaic Performance of Crystalline Silicon/Organic Heterojunction Solar Cells. , 2018, , 137-159.		4
32	Synthesis of AlO <i>x</i> thin films by atmospheric-pressure mist chemical vapor deposition for surface passivation and electrical insulator layers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	4
33	Electrospray Deposition of Poly(3-hexylthiophene) Films for Crystalline Silicon/Organic Hybrid Junction Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 061602.	1.5	4
34	Effect of thermally annealed atomic-layer-deposited AlOx/chemical tunnel oxide stack layer at the PEDOT:PSS/n-type Si interface to improve its junction quality. Journal of Applied Physics, 2020, 128, 045305.	2.5	3
35	Improved photovoltaic response by incorporating green tea modified multiwalled carbon nanotubes in organic–inorganic hybrid solar cell. Canadian Journal of Physics, 2014, 92, 849-852.	1.1	2
36	Role of the solvent in large crystal grain growth of inorganic-organic halide FAO.8CsO.2Pbl <i>x</i> Br3 â^` <i>x</i> perovskite thin films monitored by ellipsometry. Journal of Vacuun Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	n 1.2	2

#	Article	IF	CITATIONS
37	Crystalline Silicon/Graphene Oxide Hybrid Junction Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10NE22.	1.5	1
38	State-of-the-Art of Solution-Processed Crystalline Silicon/Organic Heterojunction Solar Cells: Challenges and Future. Challenges and Advances in Computational Chemistry and Physics, 2021, , 33-56.	0.6	1
39	Increased Organic Photovoltaic Cell Efficiency by Incorporating a Nonionic Fluorinated Surfactant Cathode Interlayer. Applied Physics Express, 2012, 5, 121601.	2.4	0