Zequn Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5709397/publications.pdf

Version: 2024-02-01

		196777	252626
55	2,198	29	46
papers	citations	h-index	g-index
	EE		1270
55	55	55	1270
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Removal of flue gas mercury by porous carbons derived from one-pot carbonization and activation of wood sawdust in a molten salt medium. Journal of Hazardous Materials, 2022, 424, 127336.	6.5	44
2	Facile pathway towards crystallinity adjustment and performance enhancement of copper selenide for vapor-phase elemental mercury sequestration. Chemical Engineering Journal, 2022, 430, 132811.	6.6	5
3	Acceleration of traces of Fe3+-activated peroxymonosulfate by natural pyrite: A novel cocatalyst for improving Fenton-like processes. Chemical Engineering Journal, 2022, 435, 134893.	6.6	2
4	Favorably adjusting the pore characteristics of copper sulfide by template regulation for vapor-phase elemental mercury immobilization. Journal of Materials Chemistry A, 2022, 10, 10729-10737.	5 . 2	17
5	A Molten-Salt Pyrolysis Synthesis Strategy toward Sulfur-Functionalized Carbon for Elemental Mercury Removal from Coal-Combustion Flue Gas. Energies, 2022, 15, 1840.	1.6	6
6	Charge distribution modulation and morphology controlling of copper selenide for an enhanced elemental mercury adsorption activity in flue gas. Chemical Engineering Journal, 2022, 442, 136145.	6.6	47
7	Coordinatively Unsaturated Selenides over CuFeSe < sub > 2 < /sub > toward Highly Efficient Mercury Immobilization. Environmental Science & Environmen	4.6	36
8	Mechanisms of Gas-Phase Mercury Immobilized by Metal Sulfides from Combustion Flue Gas: A Mini Review. Energy & Energy & Review. Energy &	2.5	8
9	Reduction of oxidized mercury over NOx selective catalytic reduction catalysts: A review. Chemical Engineering Journal, 2021, 421, 127745.	6.6	10
10	Light irradiation inhibits mercury adsorption by mineral sulfide sorbent. Fuel, 2021, 288, 119663.	3.4	8
11	The adsorption mechanisms of HgO on marcasite-type metal selenides: The influences of metal-terminated site. Chemical Engineering Journal, 2021, 406, 126723.	6.6	27
12	Recyclable chalcopyrite sorbent for mercury removal from coal combustion flue gas. Fuel, 2021, 290, 120049.	3.4	36
13	The influences of selenium species on mercury removal over pyrite surface: A density functional theory study. Fuel, 2021, 292, 120284.	3.4	17
14	Advances in flue gas mercury abatement by mineral chalcogenides. Chemical Engineering Journal, 2021, 411, 128608.	6.6	51
15	Mechanistic insight into the generation of high-valent iron-oxo species via peroxymonosulfate activation: An experimental and density functional theory study. Chemical Engineering Journal, 2021, 420, 130477.	6.6	21
16	Facile preparation of nanosized copper sulfide functionalized macroporous skeleton for efficient vapor-phase mercury sequestration. Chemical Engineering Journal, 2021, 419, 129561.	6.6	33
17	Activation of peroxymonosulfate by molybdenum disulfide-mediated traces of Fe(III) for sulfadiazine degradation. Chemosphere, 2021, 283, 131212.	4.2	19
18	Activation of dissolved molecular oxygen by ascorbic acid-mediated circulation of copper(II): Applications and limitations. Separation and Purification Technology, 2021, 275, 119186.	3.9	7

#	Article	IF	Citations
19	Binary mineral sulfides sorbent with wide temperature range for rapid elemental mercury uptake from coal combustion flue gas. Environmental Technology (United Kingdom), 2021, 42, 160-169.	1.2	10
20	Role of SO2 and H2O in the mercury adsorption on ceria surface: A DFT study. Fuel, 2020, 260, 116289.	3.4	45
21	In Situ Decoration of Selenide on Copper Foam for the Efficient Immobilization of Gaseous Elemental Mercury. Environmental Science & Elemental Sci	4.6	96
22	Nonradical degradation of microorganic pollutants by magnetic N-doped graphitic carbon: A complement to the unactivated peroxymonosulfate. Chemical Engineering Journal, 2020, 392, 123724.	6.6	28
23	Toward an Understanding of Fundamentals Governing the Elemental Mercury Sequestration by Metal Chalcogenides. Environmental Science & Environmental Sc	4.6	27
24	Density Functional Theory Study of Elemental Mercury Immobilization on CuSe(001) Surface: Reaction Pathway and Effect of Typical Flue Gas Components. Industrial & Engineering Chemistry Research, 2020, 59, 13603-13612.	1.8	20
25	Surface-Engineered Sponge Decorated with Copper Selenide for Highly Efficient Gas-Phase Mercury Immobilization. Environmental Science & Enp.; Technology, 2020, 54, 16195-16203.	4.6	63
26	Advances in magnetically recyclable remediators for elemental mercury degradation in coal combustion flue gas. Journal of Materials Chemistry A, 2020, 8, 18624-18650.	5 . 2	10
27	Selenide functionalized natural mineral sulfides as efficient sorbents for elemental mercury capture from coal combustion flue gas. Chemical Engineering Journal, 2020, 398, 125611.	6.6	53
28	Density Functional Theory Studies of the Adsorption and Interactions between Selenium Species and Mercury on Activated Carbon. Energy & Energy & 2020, 34, 9779-9786.	2.5	16
29	Activation of peroxymonosulfate by FeO@Fe3O4 core-shell nanowires for sulfate radical generation: Electron transfer and transformation products. Separation and Purification Technology, 2020, 247, 116942.	3.9	38
30	Development of selenized magnetite (Fe3O4â^'xSey) as an efficient and recyclable trap for elemental mercury sequestration from coal combustion flue gas. Chemical Engineering Journal, 2020, 394, 125022.	6.6	47
31	Efficient reduction of CO 2 to CO by Ag 3 PO 4/TiO 2 photocatalyst under ultraviolet and visible light irradiation. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2499.	0.8	4
32	Amorphous molybdenum selenide intercalated magnetite as a recyclable trap for the effective sequestration of elemental mercury. Journal of Materials Chemistry A, 2020, 8, 14955-14965.	5 . 2	30
33	Sulfate radical-induced destruction of emerging contaminants using traces of cobalt ions as catalysts. Chemosphere, 2020, 256, 127061.	4.2	23
34	Amorphous Molybdenum Selenide Nanosheet as an Efficient Trap for the Permanent Sequestration of Vaporâ€Phase Elemental Mercury. Advanced Science, 2019, 6, 1901410.	5.6	57
35	Trace element partition in coal fires. , 2019, , 105-142.		2
36	Trace element partition in coal gasification. , 2019, , 143-171.		0

#	Article	IF	CITATIONS
37	Trace element partition in a coal-feed industry furnace. , 2019, , 173-226.		O
38	Trace element partition in coal combustion. , 2019, , 63-103.		1
39	Selenium Functionalized Metal–Organic Framework MIL-101 for Efficient and Permanent Sequestration of Mercury. Environmental Science & Environmental	4.6	133
40	Role of Sulfur Trioxide (SO ₃) in Gas-Phase Elemental Mercury Immobilization by Mineral Sulfide. Environmental Science & Environmental Scien	4.6	58
41	Nanosized Copper Selenide Functionalized Zeolitic Imidazolate Frameworkâ€8 (CuSe/ZIFâ€8) for Efficient Immobilization of Gasâ€Phase Elemental Mercury. Advanced Functional Materials, 2019, 29, 1807191.	7.8	74
42	Nanosized Copper Selenide for Mercury Removal from Indoor Air and Emergency Disposal of Liquid Mercury Leakage. Industrial & Engineering Chemistry Research, 2019, 58, 21881-21889.	1.8	28
43	Elemental mercury oxidation over manganese oxide octahedral molecular sieve catalyst at low flue gas temperature. Chemical Engineering Journal, 2019, 356, 142-150.	6.6	62
44	Density Functional Theory Study of Mercury Adsorption on CuS Surface: Effect of Typical Flue Gas Components. Energy & En	2.5	51
45	Promotional effect of CuO loading on the catalytic activity and SO2 resistance of MnOx/TiO2 catalyst for simultaneous NO reduction and HgO oxidation. Fuel, 2018, 227, 79-88.	3.4	73
46	Synergistic effect of HCl and NO in elemental mercury catalytic oxidation over La2O3-TiO2 catalyst. Fuel, 2018, 215, 232-238.	3.4	26
47	Copper slag as a catalyst for mercury oxidation in coal combustion flue gas. Waste Management, 2018, 74, 253-259.	3.7	64
48	Dual Roles of Nano-Sulfide in Efficient Removal of Elemental Mercury from Coal Combustion Flue Gas within a Wide Temperature Range. Environmental Science & Environmental Science & 2018, 52, 12926-12933.	4.6	52
49	NH3 inhibits mercury oxidation over low-temperature MnOx/TiO2 SCR catalyst. Fuel Processing Technology, 2018, 176, 124-130.	3.7	39
50	Multiform Sulfur Adsorption Centers and Copper-Terminated Active Sites of Nano-CuS for Efficient Elemental Mercury Capture from Coal Combustion Flue Gas. Langmuir, 2018, 34, 8739-8749.	1.6	128
51	Magnetic Rattle-Type Fe ₃ O ₄ @CuS Nanoparticles as Recyclable Sorbents for Mercury Capture from Coal Combustion Flue Gas. ACS Applied Nano Materials, 2018, 1, 4726-4736.	2.4	100
52	Ternary CdS/Au/3DOM-SrTiO 3 composites with synergistic enhancement for hydrogen production from visible-light photocatalytic water splitting. Applied Catalysis B: Environmental, 2017, 215, 74-84.	10.8	93
53	Coexistence of enhanced HgO oxidation and induced Hg2+ reduction on CuO/TiO2 catalyst in the presence of NO and NH3. Chemical Engineering Journal, 2017, 330, 1248-1254.	6.6	47
54	Novel three-dimensionally ordered macroporous SrTiO3 photocatalysts with remarkably enhanced hydrogen production performance. Applied Catalysis B: Environmental, 2017, 200, 514-520.	10.8	127

ZEQUN YANG

#	Article	IF	CITATIONS
55	Highly effective and stable Ag3PO4/WO3 photocatalysts for visible light degradation of organic dyes. Journal of Molecular Catalysis A, 2014, 391, 12-18.	4.8	79