Eric Croiset

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5709191/publications.pdf

Version: 2024-02-01

61857 64668 6,804 151 43 79 citations h-index g-index papers 152 152 152 6353 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion. Energy Conversion and Management, 2003, 44, 3073-3091.	4.4	461
2	Performance comparison of Fick's, dusty-gas and Stefan–Maxwell models to predict the concentration overpotential of a SOFC anode. Journal of Power Sources, 2003, 122, 9-18.	4.0	360
3	Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel, 2006, 85, 507-512.	3.4	352
4	Review of methane catalytic cracking for hydrogen production. International Journal of Hydrogen Energy, 2011, 36, 2904-2935.	3.8	341
5	NO x and SO 2 emissions from O 2 /CO 2 recycle coal combustion. Fuel, 2001, 80, 2117-2121.	3.4	273
6	Simulation of CO2 capture using MEA scrubbing: a flowsheet decomposition method. Energy Conversion and Management, 2005, 46, 475-487.	4.4	271
7	Orbital Interactions in Biâ€6n Bimetallic Electrocatalysts for Highly Selective Electrochemical CO ₂ Reduction toward Formate Production. Advanced Energy Materials, 2018, 8, 1802427.	10.2	259
8	Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models. Energy Conversion and Management, 2005, 46, 181-196.	4.4	173
9	Hydrogen peroxide decomposition in supercritical water. AICHE Journal, 1997, 43, 2343-2352.	1.8	169
10	Experimental and modeling study of solid oxide fuel cell operating with syngas fuel. Journal of Power Sources, 2006, 161, 308-322.	4.0	149
11	High-Yield Biomass Charcoalâ€. Energy & Fuels, 1996, 10, 652-658.	2.5	147
12	Coal combustion in O ₂ /CO ₂ mixtures compared with air. Canadian Journal of Chemical Engineering, 2000, 78, 402-407.	0.9	127
13	Dynamic modelling and control of MEA absorption processes for CO2 capture from power plants. Fuel, 2014, 116, 672-691.	3.4	122
14	Technoeconomic evaluation of IGCC power plants for CO2 avoidance. Energy Conversion and Management, 2006, 47, 2250-2259.	4.4	115
15	Ni/Mg–Al mixed oxide catalyst for the steam reforming of ethanol. Applied Catalysis A: General, 2009, 363, 52-63.	2.2	111
16	Dynamic simulation of MEA absorption process for CO2 capture from power plants. International Journal of Greenhouse Gas Control, 2012, 10, 295-309.	2.3	109
17	Synthesis and Characterization of \hat{l}^3 -Fe ₂ O ₃ for H ₂ S Removal at Low Temperature. Industrial & Engineering Chemistry Research, 2015, 54, 8469-8478.	1.8	105
18	Optimization Model for Energy Planning with CO2Emission Considerations. Industrial & Engineering Chemistry Research, 2005, 44, 879-890.	1.8	93

#	Article	IF	CITATIONS
19	Methane dissociation on Ni (100), Ni (111), and Ni (553): A comparative density functional theory study. Journal of Molecular Catalysis A, 2012, 365, 103-114.	4.8	91
20	Process analysis of CO ₂ capture from flue gas using carbonation/calcination cycles. AICHE Journal, 2008, 54, 1912-1925.	1.8	80
21	Modeling of an anode-supported Ni–YSZ Ni–ScSZ ScSZ LSM–ScSZ multiple layers SOFC cell. Journal of Power Sources, 2007, 172, 235-245.	4.0	7 5
22	Effect of Metal–Support Interface During CH ₄ and H ₂ Dissociation on Ni/ĵ³-Al ₂ O ₃ : A Density Functional Theory Study. Journal of Physical Chemistry C, 2013, 117, 16907-16920.	1.5	72
23	Hydrogen sulfide adsorption on nano-sized zinc oxide/reduced graphite oxide composite at ambient condition. Applied Surface Science, 2013, 276, 646-652.	3.1	71
24	A New Numerical Approach for a Detailed Multicomponent Gas Separation Membrane Model and AspenPlus Simulation. Chemical Engineering and Technology, 2005, 28, 773-782.	0.9	70
25	A multi-period optimization model for energy planning with CO2 emission consideration. Journal of Environmental Management, 2010, 91, 1063-1070.	3.8	69
26	Design of a Sorbent to Enhance Reactive Adsorption of Hydrogen Sulfide. ACS Applied Materials & Samp; Interfaces, 2014, 6, 21167-21177.	4.0	67
27	Effect of interactions between Ni and Mo on catalytic properties of a bimetallic Ni-Mo/Al 2 O 3 propane reforming catalyst. Applied Catalysis A: General, 2015, 490, 80-92.	2.2	62
28	Oxidation of Simple Alcohols in Supercritical Water III. Formation of Intermediates from Ethanol. Industrial & Engineering Chemistry Research, 2001, 40, 86-93.	1.8	60
29	Catalytic Decomposition of Methane for Hydrogen Production. Topics in Catalysis, 2006, 37, 137-145.	1.3	60
30	CO2 sequestration in Ontario, Canada. Part I: storage evaluation of potential reservoirs. Energy Conversion and Management, 2004, 45, 2645-2659.	4.4	59
31	An Optimization Approach for Integrating Planning and CO ₂ Emission Reduction in the Petroleum Refining Industry. Industrial & Engineering Chemistry Research, 2008, 47, 760-776.	1.8	55
32	Effect of carbon on the Ni catalyzed methane cracking reaction: A DFT study. Applied Surface Science, 2014, 311, 435-442.	3.1	52
33	Mechanistic modelling of a cathode-supported tubular solid oxide fuel cell. Journal of Power Sources, 2006, 154, 74-85.	4.0	51
34	Modeling the Energy Demands and Greenhouse Gas Emissions of the Canadian Oil Sands Industry. Energy &	2.5	51
35	Techno-economic study of CO2 capture from natural gas based hydrogen plants. International Journal of Greenhouse Gas Control, 2007, 1, 55-61.	2.3	51
36	Selective Dibenzothiophene Adsorption on Graphene Prepared Using Different Methods. Industrial & Lamp; Engineering Chemistry Research, 2012, 51, 10259-10264.	1.8	51

#	Article	IF	CITATIONS
37	Hydrogen production from catalytic supercritical water reforming of glycerol with cobalt-based catalysts. International Journal of Hydrogen Energy, 2013, 38, 4368-4379.	3.8	51
38	Dynamic Modeling and Evaluation of an Industrial-Scale CO ₂ Capture Plant Using Monoethanolamine Absorption Processes. Industrial & Engineering Chemistry Research, 2014, 53, 11411-11426.	1.8	49
39	A multi-level simulation platform of natural gas internal reforming solid oxide fuel cell–gas turbine hybrid generation system: Part I. Solid oxide fuel cell model library. Journal of Power Sources, 2010, 195, 4871-4892.	4.0	46
40	Lanthanum promoted NiO–SDC anode for low temperature solid oxide fuel cells fueled with methane. Journal of Power Sources, 2012, 210, 374-380.	4.0	46
41	Heterogeneous formation of nitrous oxide from char-bound nitrogen. Combustion and Flame, 1999, 117, 140-154.	2.8	45
42	Enhanced adsorption of hydrogen sulfide and regeneration ability on the composites of zinc oxide with reduced graphite oxide. Chemical Engineering Journal, 2014, 253, 264-273.	6.6	45
43	Methane cracking using Ni supported on porous and non-porous alumina catalysts. International Journal of Hydrogen Energy, 2012, 37, 9038-9048.	3.8	44
44	Carbon nanotube growth: First-principles-based kinetic Monte Carlo model. Journal of Catalysis, 2015, 326, 15-25.	3.1	44
45	Hydrogen production by methane cracking using Ni-supported catalysts in a fluidized bed. International Journal of Hydrogen Energy, 2012, 37, 10690-10701.	3.8	43
46	Direct-methane solid oxide fuel cell (SOFC) with Ni-SDC anode-supported cell. International Journal of Hydrogen Energy, 2017, 42, 23118-23129.	3.8	43
47	First-Principles Based Microkinetic Modeling of CO ₂ Reduction at the Ni/SDC Cathode of a Solid Oxide Electrolysis Cell. Journal of Physical Chemistry C, 2018, 122, 21151-21161.	1.5	43
48	Performance of ethanol-fuelled solid oxide fuel cells: Proton and oxygen ion conductors. Chemical Engineering Journal, 2007, 133, 187-194.	6.6	42
49	Techno-Economic Study of CO2Capture from an Existing Cement Plant Using MEA Scrubbing. International Journal of Green Energy, 2007, 4, 197-220.	2.1	40
50	Modelling of a cathode-supported tubular solid oxide fuel cell operating with biomass-derived synthesis gas. Journal of Power Sources, 2007, 166, 386-399.	4.0	39
51	Reforming of bioethanol over Ni/Al2O3 and Ni/CeZrO2/Al2O3 catalysts in supercritical water for hydrogen production. International Journal of Hydrogen Energy, 2011, 36, 2877-2886.	3.8	38
52	Performance characteristics of Mo–Ni/Al2O3 catalysts in LPG oxidative steam reforming for hydrogen production. International Journal of Hydrogen Energy, 2014, 39, 10061-10073.	3.8	38
53	Catalytic reforming of glycerol in supercritical water with nickel-based catalysts. International Journal of Hydrogen Energy, 2014, 39, 14739-14750.	3.8	36
54	Energy Optimization Model with CO ₂ -Emission Constraints for the Canadian Oil Sands Industry. Energy & Energy	2.5	34

#	Article	IF	CITATIONS
55	Simulation of Electrochemical Impedance Spectra of Solid Oxide Fuel Cells Using Transient Physical Models. Journal of the Electrochemical Society, 2008, 155, B270.	1.3	33
56	Modeling of an anode-supported Ni-YSZ Ni-ScSZ ScSZ LSM-ScSZ multiple layers SOFC cell. Journal of Power Sources, 2007, 172, 246-252.	4.0	32
57	Ni-samaria-doped ceria (Ni-SDC) anode-supported solid oxide fuel cell (SOFC) operating with CO. International Journal of Hydrogen Energy, 2017, 42, 9180-9187.	3.8	32
58	Direct Observation of H2O2during Alcohol Oxidation by O2in Supercritical Water. Industrial & Engineering Chemistry Research, 1998, 37, 1755-1760.	1.8	31
59	Carbon clusters on the Ni(111) surface: a density functional theory study. Physical Chemistry Chemical Physics, 2014, 16, 2954.	1.3	31
60	Reaction and Deactivation Rates of Methane Catalytic Cracking over Nickel. Industrial & Engineering Chemistry Research, 2011, 50, 12460-12470.	1.8	30
61	A multi-level simulation platform of natural gas internal reforming solid oxide fuel cellâ \in gas turbine hybrid generation system â \in Part II. Balancing units model library and system simulation. Journal of Power Sources, 2011, 196, 8424-8434.	4.0	30
62	Dynamic Simulation of MEA Absorption Processes for CO2 Capture from Fossil Fuel Power Plant. Energy Procedia, 2011, 4, 1478-1485.	1.8	29
63	Reducing sintering temperature while maintaining high conductivity for SOFC electrolyte: Copper as sintering aid for Samarium Doped Ceria. Ceramics International, 2020, 46, 1148-1157.	2.3	29
64	Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature. Applied Surface Science, 2013, 280, 360-365.	3.1	28
65	A multi-period optimization model for energy planning with CO2 emission considerations. Energy Procedia, 2009, 1, 4339-4346.	1.8	27
66	Hydrogen production from bioethanol reforming in supercritical water. Journal of Supercritical Fluids, 2011, 57, 58-65.	1.6	26
67	Dynamic modelling of a CO2 capture and purification unit for an oxy-coal-fired power plant. International Journal of Greenhouse Gas Control, 2014, 22, 111-122.	2.3	26
68	Influence of pressure on the heterogeneous formation and destruction of nitrogen oxides during char combustion. Combustion and Flame, 1998, 112, 33-44.	2.8	25
69	A theoretical study on CO2 electrolysis through synergistic manipulation of Ni/Mn doping and oxygen vacancies in La(Sr)FeO3. Journal of Catalysis, 2020, 383, 273-282.	3.1	25
70	Analysis and Optimization of Carbon Dioxide Emission Mitigation Options in the Cement Industry. American Journal of Environmental Sciences, 2008, 4, 482-490.	0.3	25
71	Characterization of Copper Foam as Catalytic Material in Ethanol Dehydrogenation. Canadian Journal of Chemical Engineering, 2007, 85, 917-924.	0.9	24
72	Long-term electricity demand forecasting for power system planning using economic, demographic and climatic variables. European Journal of Industrial Engineering, 2009, 3, 277.	0.5	24

#	Article	IF	CITATIONS
73	Optimization of energy usage for fleetâ€wide power generating system under carbon mitigation options. AICHE Journal, 2009, 55, 3168-3190.	1.8	24
74	Hydrogen production from supercritical water reforming of glycerol in an empty Inconel 625 reactor. International Journal of Hydrogen Energy, 2014, 39, 159-170.	3.8	24
75	Theoretical investigation of the methane cracking reaction pathways on Ni $(1\ 1\ 1)$ surface. Chemical Physics Letters, 2015, 639, 205-210.	1.2	24
76	Dynamic Optimization of Lurgi Type Methanol Reactor Using Hybrid GA-GPS Algorithm: The Optimal Shell Temperature Trajectory and Carbon Dioxide Utilization. Industrial & Engineering Chemistry Research, 2016, 55, 1164-1173.	1.8	24
77	Effect of socio-economic factors on EV/HEV/PHEV adoption rate in Ontario. Technological Forecasting and Social Change, 2015, 98, 93-104.	6.2	21
78	Evaluation of Foam Nickel for the Catalytic Partial Oxidation of Methane. Catalysis Letters, 2009, 128, 144-153.	1.4	20
79	CO2 sequestration in Ontario, Canada. Part II: cost estimation. Energy Conversion and Management, 2004, 45, 3207-3217.	4.4	19
80	Ni/YSZ pattern anodes fabrication and their microstructure and electrochemical behavior changes in H2–H2O environments. Journal of Power Sources, 2013, 226, 162-172.	4.0	19
81	Effects of metal elements in catalytic growth of carbon nanotubes/graphene: A first principles DFT study. Applied Surface Science, 2014, 317, 923-928.	3.1	18
82	An analytical model of view factors for radiation heat transfer in planar and tubular solid oxide fuel cells. Journal of Power Sources, 2011, 196, 3223-3232.	4.0	17
83	Electrospun cellulose acetate nanofibers for airborne nanoparticle filtration. Textile Reseach Journal, 2019, 89, 3137-3149.	1.1	16
84	Thermodynamic assessment of solid oxide fuel cell system integrated with bioethanol purification unit. Journal of Power Sources, 2007, 174, 191-198.	4.0	15
85	Coal combustion with flue gas recirculation for CO2 recovery. , 1999, , 581-586.		15
86	The influence of pressure on char combustion kinetics. Proceedings of the Combustion Institute, 1996, 26, 3095-3102.	0.3	14
87	Production of Hydrogen from the Noncatalytic Partial Oxidation of Ethanol. Industrial & Description of Engineering Chemistry Research, 2004, 43, 2636-2642.	1.8	14
88	Dynamic Modelling and Controllability Studies of a Commercial-scale MEA Absorption Processes for CO2 Capture from Coal-fired Power Plants. Energy Procedia, 2014, 63, 1595-1600.	1.8	13
89	Modelling and Ni/Yttria-Stabilized-Zirconia pattern anode experimental validation of a new charge transfer reactions mechanism for hydrogen electrochemical oxidation on solid oxide fuel cell anodes. Journal of Power Sources, 2014, 248, 777-788.	4.0	13
90	A two-dimensional modeling of solid oxide fuel cell button cells with detailed electrochemistry mechanism. Journal of Power Sources, 2016, 333, 164-172.	4.0	13

#	Article	IF	CITATIONS
91	Techno-Economic Analysis of Pressurized Oxy-Fuel Combustion of Petroleum Coke. Energies, 2020, 13, 3463.	1.6	13
92	A mixed-integer non-linear programming model for CO _{2 emission reduction in the power generation sector. International Journal of Environment and Pollution, 2007, 29, 254.}	0.2	12
93	Impact of PHEVs Penetration on Ontario's Electricity Grid and Environmental Considerations. Energies, 2012, 5, 5019-5037.	1.6	12
94	Evaluation of an Inconel-625 Reactor and its Wall Effects on Ethanol Reforming in Supercritical Water. Industrial & Department of the Water and State of the Wat	1.8	12
95	Multiobjective Optimization of Methanol Synthesis Loop from Synthesis Gas via a Multibed Adiabatic Reactor with Additional Interstage CO ₂ Quenching. Energy & Samp; Fuels, 2015, 29, 530-537.	2.5	12
96	Kinetics of the absorption of carbon dioxide into aqueous ammonia solutions. AICHE Journal, 2016, 62, 3673-3684.	1.8	12
97	New composite sustainability indices for the assessment of a chemical process in the conceptual design stage: case study on hydrogenation plant. Journal of Cleaner Production, 2016, 124, 132-141.	4.6	12
98	Reactive Fe-O-Ce Sites in Ceria Catalysts for Soot Oxidation. Catalysts, 2019, 9, 815.	1.6	12
99	New mechanistic insights into CO2 reduction in solid oxide electrolysis cell through a multi-scale modelling approach. Journal of Power Sources, 2021, 490, 229488.	4.0	12
100	Effect of mode of operation on hydrogen production from glycerol at thermal neutral conditions: Thermodynamic analysis. International Journal of Hydrogen Energy, 2010, 35, 10257-10270.	3.8	11
101	Experimental investigation of the catalytic cracking of methane over a supported Ni catalyst. Canadian Journal of Chemical Engineering, 2009, 87, 99-105.	0.9	10
102	Optimizing energy production with integrated CCS technology for CO2 emissions mitigation in the Canadian oil sands industry. Energy Procedia, 2009, 1, 3985-3992.	1.8	10
103	Effects of an Iron Pentacarbonyl Additive on Counterflow Natural Gas and Ethanol Flames. Energy & Ener	2.5	10
104	Numerical analysis of effects of iron pentacarbonyl as fuel additive for reducing NO and soot precursors from methane/air diffusion flame. Fuel, 2018, 216, 768-780.	3.4	9
105	Carbon Dioxide Electroreduction: Orbital Interactions in Biâ€5n Bimetallic Electrocatalysts for Highly Selective Electrochemical CO ₂ Reduction toward Formate Production (Adv. Energy) Tj ETQq1 1 0.78	4 30.4 rgBT	∕Øverlock
106	Steady-State Simulation of a Novel Annular Multitubular Reactor for Enhanced Methanol Production. Industrial & Engineering Chemistry Research, 2013, 52, 15387-15393.	1.8	8
107	Multi-Period Optimization Model for Electricity Generation Planning Considering Plug-in Hybrid Electric Vehicle Penetration. Energies, 2015, 8, 3978-4002.	1.6	8
108	Reduced-order modelling of flexible CCS and assessment using short-term resource scheduling approach. International Journal of Greenhouse Gas Control, 2016, 48, 253-274.	2.3	8

#	Article	IF	Citations
109	Control of An Oxy-fuel Capture and Purification Unit For Coal-Based Power Plants. Energy Procedia, 2014, 63, 476-483.	1.8	7
110	On the particle evolution in iron pentacarbonyl loaded counterflow methane–air flame. Combustion and Flame, 2018, 194, 1-14.	2.8	7
111	Design of a thermally integrated bioethanol-fueled solid oxide fuel cell system integrated with a distillation column. Journal of Power Sources, 2009, 187, 190-203.	4.0	6
112	Stability and electrochemical performance of Ni/YSZ pattern anodes in H ₂ /H ₂ O atmosphere. Canadian Journal of Chemical Engineering, 2015, 93, 2157-2167.	0.9	6
113	Two-dimensional mechanistic Solid Oxide Fuel Cell model with revised detailed methane reforming mechanism. Electrochimica Acta, 2017, 249, 216-226.	2.6	6
114	Mechanistic study of site blocking catalytic deactivation through accelerated kinetic Monte Carlo. Journal of Catalysis, 2019, 378, 176-183.	3.1	6
115	Synthesis Gas Production via Partial Oxidation, CO ₂ Reforming, and Oxidative CO ₂ Reforming of CH ₄ over a Ni/Mg-Al Hydrotalcite-type Catalyst. Clean Technology, 2014, 20, 189-201.	0.1	6
116	A General Approach for Electrochemical Impedance Spectroscopy Simulation using Transient Mechanistic SOFC Model. ECS Transactions, 2007, 7, 1889-1899.	0.3	5
117	Performance Assessment of Bioethanol-Fed Solid Oxide Fuel Cell System Integrated with Distillation Column. ECS Transactions, 2007, 7, 1475-1482.	0.3	5
118	Economics of CO2 Capture from a Coal-Fired Power Plant â€" a Sensitivity Analysis. , 2003, , 1735-1738.		5
119	Techno-economic evaluation of IGCC power plants with CO2 capture. , 2005, , 1193-1198.		5
120	Influence of Surface Properties of Nanostructured Ceria-Based Catalysts on Their Stability Performance. Nanomaterials, 2022, 12, 392.	1.9	5
121	Gas Chromatography Method for the Characterization of Ethanol Steam Reforming Products. Journal of Chromatographic Science, 2007, 45, 153-157.	0.7	4
122	An environmentally conscious robust optimisation approach for planning power generating systems. International Journal of Global Warming, 2009, 1, 307.	0.2	4
123	Optimal implementation of CO2 capture technology in power and hydrogen production for oil sands operations. Canadian Journal of Chemical Engineering, 2010, 88, n/a-n/a.	0.9	4
124	A Decentralized Control Structure for a CO2 Compression, Capture and Purification process: An Uncertain Relative Gain Array Approach. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 8558-8563.	0.4	4
125	Investigation of MgO Promoted NiO: SDC Anode Material for Intermediate Temperatures Solid Oxide Fuel Cells. ECS Transactions, 2011, 35, 1683-1688.	0.3	4
126	Thermodynamic analysis of hydrogen production from glycerol at energy selfâ€sufficient conditions. Canadian Journal of Chemical Engineering, 2012, 90, 1112-1119.	0.9	4

#	Article	IF	Citations
127	Simulation of methane catalytic cracking in a bubbling fluidised bed. Canadian Journal of Chemical Engineering, 2013, 91, 1928-1935.	0.9	4
128	Effects of Copper Oxide Addition on the Electrochemical Properties of Samarium Doped Ceria Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells. ECS Transactions, 2015, 68, 387-394.	0.3	4
129	Real-Time Observation of Carbon Oxidation by Driven Motion of Catalytic Ceria Nanoparticles within Low Pressure Oxygen. Scientific Reports, 2019, 9, 8082.	1.6	4
130	The Demonstration of the Superiority of the Dual Ni-Based Catalytic System for the Adjustment of the H2/CO Ratio in Syngas for Green Fuel Technologies. Catalysts, 2020, 10, 1056.	1.6	4
131	Simulation of a coal hydrogasification process with integrated CO2 capture., 2005,, 1941-1945.		4
132	Dynamic Measurement of Copper (II) Ion Adsorption in Activated Carbon Fixed Bed Columns. American Journal of Environmental Sciences, 2008, 4, 412-419.	0.3	4
133	Modeling study of the heat of absorption and solid precipitation for CO2 capture by chilled ammonia. RSC Advances, 2019, 9, 20075-20086.	1.7	3
134	Theoretical Investigation of CO2 Reduction at Ni/SDC and La(Sr)FeO3-Î [*] Cathodes in Solid Oxide Electrolysis Cells. ECS Transactions, 2019, 91, 2673-2682.	0.3	3
135	Using shortâ€term resource scheduling for assessing effectiveness of CCS within electricity generation subsector. AICHE Journal, 2015, 61, 4210-4234.	1.8	2
136	Effects of SO 2 on CO 2 capture using chilled ammonia solvent. International Journal of Greenhouse Gas Control, 2017, 63, 442-448.	2.3	2
137	Oxidation of SO2and Recovery of SO3Using Nonaqueous Solvents. Industrial & Engineering Chemistry Research, 2005, 44, 5950-5954.	1.8	1
138	Investigation of H2, CO and Syngas Electrochemical Performance Using Ni/YSZ Pattern Anodes. ECS Transactions, 2013, 53, 163-172.	0.3	1
139	Fabrication of Metal Supported Solid Oxide Fuel Cells (MS-SOFC) with Ceria and Zirconia Based Electrolytes. ECS Transactions, 2017, 78, 2051-2058.	0.3	1
140	Shrinkage Dynamics of Stainless Steel 430-L and Yittrium Stabilized Zirconia and Its Application in Co-Sintering for MS-SOFCs. ECS Transactions, 2019, 91, 921-929.	0.3	1
141	An optimal fleet-wide CO2 emission strategy for Ontario. , 2005, , 1427-1432.		1
142	Design and simulation of membrane based gas separation processes in AspenPlusâ,,¢ for capturing CO2 from flue gases., 2005,, 1937-1940.		0
143	Simulation and Modeling Study of Anode-Supported Planar SOFC Operating with Synthesis Gas. ECS Transactions, 2007, 7, 1945-1953.	0.3	0
144	An Integrated Approach for Carbon Mitigation in the Electric Power Generation Sector. , 2009, , 277-312.		0

#	Article	IF	CITATIONS
145	Methane Internal Reforming over Ni1-x-yCuxMgyO-SDC Anode Material at Intermediate Temperatures. ECS Transactions, 2009, 25, 1975-1984.	0.3	o
146	The use of step and pulse tests to design activated carbon adsorption columns for recovery of copper ions from aqueous industrial effluents. International Journal of Environmental Engineering, 2010, 2, 362.	0.1	0
147	Energy supply planning for the introduction of carbon dioxide (CO2) capture technologies. , 2010, , 93-152.		0
148	CLEAN ENERGY AND CO2 CAPTURE, TRANSPORT AND STORAGE. Advances in Process Systems Engineering, 2012, , 351-398.	0.3	0
149	Production of Carbon Neutral Methanol Using Co-Electrolysis of CO ₂ and Steam in Solid Oxide Electrolysis Cell in Tandem with Direct Air Capture. ECS Transactions, 2021, 103, 663-676.	0.3	0
150	Techno-economic assessment of geological CO2 sequestration in Ontario., 2005,, 1221-1227.		0
151	Forecasting the Impact of Plug-In Hybrid Electric Vehicles Penetration on Ontario's Electricity Grid. , 2010, , .		0