
Charlotte Simmler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5709041/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NMR reveals an undeclared constituent in custom synthetic peptides. Journal of Pharmaceutical and Biomedical Analysis, 2020, 178, 112915.	1.4	11
2	SAR Study on Estrogen Receptor α/β Activity of (Iso)flavonoids: Importance of Prenylation, C-Ring (Un)Saturation, and Hydroxyl Substituents. Journal of Agricultural and Food Chemistry, 2020, 68, 10651-10663.	2.4	23
3	Selective Chlorophyll Removal Method to "Degreen―Botanical Extracts. Journal of Natural Products, 2020, 83, 1846-1858.	1.5	8
4	The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Natural Product Reports, 2019, 36, 35-107.	5.2	92
5	Formation of (2 <i>R</i>)- and (2 <i>S</i>)-8-Prenylnaringenin Glucuronides by Human UDP-Glucuronosyltransferases. Journal of Agricultural and Food Chemistry, 2019, 67, 11650-11656.	2.4	5
6	The DESIGNER Approach Helps Decipher the Hypoglycemic Bioactive Principles of <i>Artemisia dracunculus</i> (Russian Tarragon). Journal of Natural Products, 2019, 82, 3321-3329.	1.5	12
7	Estrogen Receptor (ER) Subtype Selectivity Identifies 8-Prenylapigenin as an ERÎ ² Agonist from <i>Glycyrrhiza inflata</i> and Highlights the Importance of Chemical and Biological Authentication. Journal of Natural Products, 2018, 81, 966-975.	1.5	20
8	Integrated analytical assets aid botanical authenticity and adulteration management. Fìtoterapìâ, 2018, 129, 401-414.	1.1	49
9	Evidence for Chemopreventive and Resilience Activity of Licorice: <i>Glycyrrhiza Glabra</i> and G. <i>Inflata</i> Extracts Modulate Estrogen Metabolism in ACI Rats. Cancer Prevention Research, 2018, 11, 819-830.	0.7	12
10	Evolution of Quantitative Measures in NMR: Quantum Mechanical qHNMR Advances Chemical Standardization of a Red Clover (<i>Trifolium pratense</i>) Extract. Journal of Natural Products, 2017, 80, 634-647.	1.5	42
11	Isolation and structural characterization of dihydrobenzofuran congeners of licochalcone A. Fìtoterapìâ, 2017, 121, 6-15.	1.1	14
12	Structural Sequencing of Oligopeptides Aided by ¹ H Iterative Full-Spin Analysis. Journal of Natural Products, 2017, 80, 2630-2643.	1.5	9
13	Cytochrome P450 inhibition by three licorice species and fourteen licorice constituents. European Journal of Pharmaceutical Sciences, 2017, 109, 182-190.	1.9	53
14	Biochemical characterization and anti-inflammatory properties of an isothiocyanate-enriched moringa (Moringa oleifera) seed extract. PLoS ONE, 2017, 12, e0182658.	1.1	102
15	Dissemination of original NMR data enhances reproducibility and integrity in chemical research. Natural Product Reports, 2016, 33, 1028-1033.	5.2	35
16	Holistic Analysis Enhances the Description of Metabolic Complexity in Dietary Natural Products. Advances in Nutrition, 2016, 7, 179-189.	2.9	14
17	Botanical Integrity: Part 2: Traditional and Modern Analytical Approaches. HerbalGram, 2016, 109, 60-64.	0.0	3
18	Induction of NAD(P)H:Quinone Oxidoreductase 1 (NQO1) by Glycyrrhiza Species Used for Women's Health: Differential Effects of the Michael Acceptors Isoliquiritigenin and Licochalcone A. Chemical Research in Toxicology, 2015, 28, 2130-2141.	1.7	30

CHARLOTTE SIMMLER

#	Article	IF	CITATIONS
19	Digital NMR Profiles as Building Blocks: Assembling ¹ H Fingerprints of Steviol Glycosides. Journal of Natural Products, 2015, 78, 658-665.	1.5	18
20	Differential Effects of Glycyrrhiza Species on Genotoxic Estrogen Metabolism: Licochalcone A Downregulates P450 1B1, whereas Isoliquiritigenin Stimulates It. Chemical Research in Toxicology, 2015, 28, 1584-1594.	1.7	25
21	Metabolite Profiling and Classification of DNA-Authenticated Licorice Botanicals. Journal of Natural Products, 2015, 78, 2007-2022.	1.5	43
22	Botanical Integrity: The Importance of the Integration of Chemical, Biological, and Botanical Analyses, and the Role of DNA Barcoding. HerbalGram, 2015, 106, 58-60.	0.0	1
23	<i>K</i> -Targeted Metabolomic Analysis Extends Chemical Subtraction to DESIGNER Extracts: Selective Depletion of Extracts of Hops (<i>Humulus lupulus</i>). Journal of Natural Products, 2014, 77, 2595-2604.	1.5	18
24	Speciesâ€specific Standardisation of Licorice by Metabolomic Profiling of Flavanones and Chalcones. Phytochemical Analysis, 2014, 25, 378-388.	1.2	21
25	Universal quantitative NMR analysis of complex natural samples. Current Opinion in Biotechnology, 2014, 25, 51-59.	3.3	272
26	Orthogonal Analysis Underscores the Relevance of Primary and Secondary Metabolites in Licorice. Journal of Natural Products, 2014, 77, 1806-1816.	1.5	19
27	Importance of Purity Evaluation and the Potential of Quantitative ¹ H NMR as a Purity Assay. Journal of Medicinal Chemistry, 2014, 57, 9220-9231.	2.9	289
28	New finding of an anti-TB compound in the genus Marsypopetalum (Annonaceae) from a traditional herbal remedy of Laos. Journal of Ethnopharmacology, 2014, 151, 903-911.	2.0	23
29	Phytochemistry and biological properties of glabridin. Fìtoterapìâ, 2013, 90, 160-184.	1.1	190
30	Dynamic Residual Complexity of the Isoliquiritigenin–Liquiritigenin Interconversion During Bioassay. Journal of Agricultural and Food Chemistry, 2013, 61, 2146-2157.	2.4	46
31	Absolute configuration of naturally occurring glabridin. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 1212-1216.	0.4	2
32	Evaluation of Estrogenic Activity of Licorice Species in Comparison with Hops Used in Botanicals for Menopausal Symptoms. PLoS ONE, 2013, 8, e67947.	1.1	75
33	Diarylheptanoids from <i>Dioscorea villosa</i> (Wild Yam). Journal of Natural Products, 2012, 75, 2168-2177.	1.5	40
34	Glucosyloxybenzyl Eucomate Derivatives from <i>Vanda teres</i> Stimulate HaCaT Cytochrome <i>c</i> Oxidase Journal of Natural Products, 2011, 74, 949-955.	1.5	40
35	Antioxidant Biomarkers from Vanda coerulea Stems Reduce Irradiated HaCaT PGE-2 Production as a Result of COX-2 Inhibition. PLoS ONE, 2010, 5, e13713.	1.1	45