Graham J Nathan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5708847/publications.pdf

Version: 2024-02-01

81434 139680 5,876 232 41 citations h-index papers

61 g-index 235 235 235 3365 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The effect of particle size and volumetric loading on the gas temperature distributions in a particle-laden flow heated with high-flux radiation. International Journal of Heat and Mass Transfer, 2022, 182, 122041.	2.5	1
2	Measured global thermal performance of a directly irradiated suspension-flow solar particle receiver with an open aperture. Solar Energy, 2022, 231, 185-193.	2.9	3
3	Influence of particle loading, Froude and Stokes number on the global thermal performance of a vortex-based solar particle receiver. Renewable Energy, 2022, 184, 201-214.	4.3	7
4	Editorial: Technological and Fundamental Advances in Production, Storage and Utilization of Fuels. Frontiers in Energy Research, 2022, 10 , .	1.2	1
5	Direct measurements and prediction of the particle egress from a vortex-based solar cavity receiver with an open aperture. Solar Energy, 2022, 235, 105-117.	2.9	2
6	The effect of instantaneous particle distributions on the gas-phase temperature in an unsteady particle-laden jet heated with high-flux radiation. International Journal of Multiphase Flow, 2022, 153, 104106.	1.6	0
7	In-situ imaging of particle size distribution in an industrial-scale calcination reactor using micro-focusing particle shadowgraphy. Powder Technology, 2022, 404, 117459.	2.1	4
8	Bottom-Up Estimates of the Cost of Supplying High-Temperature Industrial Process Heat from Intermittent Renewable Electricity and Thermal Energy Storage in Australia. Processes, 2022, 10, 1070.	1.3	6
9	Effects of gas preheat temperature on soot formation in co-flow methane and ethylene diffusion flames. Proceedings of the Combustion Institute, 2021, 38, 1225-1232.	2.4	15
10	A mathematical model to assess the influence of transients on a refractory-lined solar receiver. Renewable Energy, 2021, 167, 217-235.	4.3	12
11	Renormalisation of particle distributions in an initially-biased turbulent jet by swirl and radial injection. International Journal of Multiphase Flow, 2021, 135, 103509.	1.6	2
12	The flow-field within a vortex-based solar cavity receiver with an open aperture. Experimental Thermal and Fluid Science, 2021, 123, 110314.	1.5	10
13	Experimental investigation of the influence of solar-to-fuel ratio on performance and stability characteristics of hybrid solar-MILD hydrogen processes. Proceedings of the Combustion Institute, 2021, 38, 6723-6731.	2.4	3
14	Statistical relationship between soot volume fraction, temperature, primary particle diameter and OH radicals along transects normal to the local reaction zone in a turbulent flame. Proceedings of the Combustion Institute, 2021, 38, 1497-1505.	2.4	3
15	Temperature imaging of mobile BaMgAl10O17:Eu phosphor aggregates under high radiation flux. Optics and Lasers in Engineering, 2021, 137, 106398.	2.0	5
16	On the use of oscillating jet flames in a coflow to develop soot models for practical applications. Proceedings of the Combustion Institute, 2021, 38, 1309-1317.	2.4	0
17	Soot-flowfield interactions in turbulent non-premixed bluff-body flames of ethylene/nitrogen. Proceedings of the Combustion Institute, 2021, 38, 1125-1132.	2.4	6
18	Generating planar distributions of soot particles from luminosity images in turbulent flames using deep learning. Applied Physics B: Lasers and Optics, 2021, 127, 1.	1.1	5

#	Article	IF	CITATIONS
19	Particle velocity measurement within a free-falling particle curtain using microscopic shadow velocimetry. Optics Express, 2021, 29, 10923.	1.7	8
20	Insights from a new method providing single-shot, planar measurement of gas-phase temperature in particle-laden flows under high-flux radiation. Experiments in Fluids, 2021 , 62 , 1 .	1.1	5
21	An adaptive aerodynamic approach to mitigate convective losses from solar cavity receivers. Solar Energy, 2021, 224, 1333-1343.	2.9	1
22	Numerical and experimental analysis of poly-dispersion effects on particle-laden jets. International Journal of Heat and Fluid Flow, 2021, 91, 108852.	1.1	8
23	Flow regimes within horizontal particle-laden pipe flows. International Journal of Multiphase Flow, 2021, 143, 103748.	1.6	9
24	Effects of steam on the kinetics of calcium carbonate calcination. Chemical Engineering Science, 2021, 246, 116987.	1.9	25
25	Integration assessment of the hybrid sulphur cycle with a copper production plant. Energy Conversion and Management, 2021, 249, 114832.	4.4	5
26	The influence of the coefficient of restitution on flow regimes within horizontal particle-laden pipe flows. Physics of Fluids, 2021, 33, .	1.6	8
27	The effect of oxygen concentration in the co-flow of laminar ethylene diffusion flames. Combustion and Flame, 2020, 211, 96-111.	2.8	40
28	The coupling between the internal and external flows through a hybridized solar cavity receiver under isothermal conditions. Experimental Thermal and Fluid Science, 2020, 113, 110028.	1.5	2
29	Particle residence time distributions in a vortex-based solar particle receiver-reactor: An experimental, numerical and theoretical study. Chemical Engineering Science, 2020, 214, 115421.	1.9	14
30	A Review of Terminology Used to Describe Soot Formation and Evolution under Combustion and Pyrolytic Conditions. ACS Nano, 2020, 14, 12470-12490.	7.3	122
31	Impact of Flow Blowing and Suction strategies on the establishment of an aerodynamic barrier for solar cavity receivers. Applied Thermal Engineering, 2020, 180, 115841.	3.0	8
32	Luminescence interference to two-colour toluene laser-induced fluorescence thermometry in a particle-laden flow. Experiments in Fluids, 2020, 61, 1.	1.1	7
33	Effect of Calcium and Phosphorus on Interactions between Quartz Sand and K-Salt-Doped Wood under Both Steam Gasification and Combustion Atmospheres. Energy & Energy & 2020, 34, 3210-3222.	2.5	9
34	Gas-lift circulation of a liquid between two inter-connected bubble columns. Chemical Engineering Science, 2020, 218, 115574.	1.9	3
35	Experimental and numerical study of the influence of syngas composition on the performance and stability of a laboratory-scale MILD combustor. Experimental Thermal and Fluid Science, 2020, 115, 110083.	1.5	12
36	Interactions between Quartz Sand and Wood Doped with either K or Na Salts under Steam Gasification and Combustion Atmospheres. Industrial & Engineering Chemistry Research, 2020, 59, 1712-1722.	1.8	8

#	Article	IF	CITATIONS
37	Experimental insights into the mechanism of heat losses from a cylindrical solar cavity receiver equipped with an air curtain. Solar Energy, 2020, 201, 314-322.	2.9	21
38	Experimental investigation on the influence of an air curtain on the convective heat losses from solar cavity receivers under windy condition. AIP Conference Proceedings, 2020, , .	0.3	3
39	First-of-a-kind investigation on performance of a directly-irradiated windowless vortex-based particle receiver. AIP Conference Proceedings, 2020, , .	0.3	5
40	Technical feasibility of integrating concentrating solar thermal energy in the Bayer alumina process. AIP Conference Proceedings, 2020, , .	0.3	4
41	First-of-a-kind demonstration of a direct hybrid between a solar receiver and the radiant burner technology. AIP Conference Proceedings, 2020, , .	0.3	0
42	A new correlation between soot sheet width and soot volume fraction in turbulent non-premixed jet flames. Proceedings of the Combustion Institute, 2019, 37, 927-934.	2.4	6
43	An experimental study of the stability and performance characteristics of a Hybrid Solar Receiver Combustor operated in the MILD combustion regime. Proceedings of the Combustion Institute, 2019, 37, 5687-5695.	2.4	16
44	Resolving the three-dimensional structure of particles that are aerodynamically clustered by a turbulent flow. Physics of Fluids, 2019, 31, .	1.6	15
45	Performance characteristics of a hybrid solar receiver combustor utilising hydrogen or syngas. AIP Conference Proceedings, 2019, , .	0.3	1
46	Hybrid Solar-MILD Combustion for Renewable Energy Generation. Frontiers in Mechanical Engineering, 2019, 5, .	0.8	1
47	A technical assessment of pneumatic conveying of solids for a high temperature particle receiver. AIP Conference Proceedings, 2019, , .	0.3	1
48	Particle residence time distributions in a vortex-based solar particle receiver-reactor: The influence of receiver tilt angle. Solar Energy, 2019, 190, 126-138.	2.9	12
49	The influence of wind speed, aperture ratio and tilt angle on the heat losses from a finely controlled heated cavity for a solar receiver. Renewable Energy, 2019, 143, 1544-1553.	4.3	13
50	Calculated concentration distributions and time histories of key species in an acoustically forced laminar flame. Combustion and Flame, 2019, 204, 189-203.	2.8	4
51	Thermogravimetric analysis of Cu, Mn, Co, and Pb oxides for thermochemical energy storage. Journal of Energy Storage, 2019, 23, 138-147.	3.9	17
52	Characteristics of swirling and precessing flows generated by multiple confined jets. Physics of Fluids, 2019, 31, 055102.	1.6	5
53	Numerical investigation of the isothermal flow field and particle deposition behaviour in a rotating fluidized bed solar receiver. Solar Energy, 2019, 182, 348-360.	2.9	4
54	Experimental investigation of the reduction of liquid bismuth oxide with graphite. Fuel Processing Technology, 2019, 188, 110-117.	3.7	18

#	Article	IF	CITATIONS
55	Preliminary evaluation of a novel solar bubble receiver for heating a gas. Solar Energy, 2019, 182, 264-277.	2.9	38
56	The thermo-chemical potential liquid chemical looping gasification with bismuth oxide. International Journal of Hydrogen Energy, 2019, 44, 8038-8050.	3.8	17
57	The influence of wall temperature distribution on the mixed convective losses from a heated cavity. Applied Thermal Engineering, 2019, 155, 157-165.	3.0	15
58	The energetic performance of a liquid chemical looping cycle with solar thermal energy storage. Energy, 2019, 170, 93-101.	4.5	12
59	Thermal performance of vortex-based solar particle receivers for sensible heating. Solar Energy, 2019, 177, 163-177.	2.9	24
60	Experimental assessment of copper oxide for liquid chemical looping for thermal energy storage. Journal of Energy Storage, 2019, 21, 216-221.	3.9	12
61	Simultaneously calibrated two-line atomic fluorescence for high-precision temperature imaging in sooting flames. Proceedings of the Combustion Institute, 2019, 37, 1417-1425.	2.4	12
62	Thermal performance analysis of a syngas-fuelled hybrid solar receiver combustor operated in the MILD combustion regime. Combustion Science and Technology, 2019, 191, 2-17.	1.2	19
63	Potential of molten lead oxide for liquid chemical looping gasification (LCLG): A thermochemical analysis. International Journal of Hydrogen Energy, 2018, 43, 4195-4210.	3.8	27
64	Ash–Bed Material Interaction during the Combustion and Steam Gasification of Australian Agricultural Residues. Energy & Description of Australian Agricultural Residues. Energy & Description of Australian Agricultural Residues.	2.5	21
65	Experimental investigation of the effects of wind speed and yaw angle on heat losses from a heated cavity. Solar Energy, 2018, 165, 178-188.	2.9	20
66	Non-intrusive temperature measurement of particles in a fluidised bed heated by well-characterised radiation. International Journal of Multiphase Flow, 2018, 100, 186-195.	1.6	7
67	Mixed mode operation for the Solar Aided Power Generation. Applied Thermal Engineering, 2018, 139, 177-186.	3.0	30
68	Solar thermal hybrids for combustion power plant: A growing opportunity. Progress in Energy and Combustion Science, 2018, 64, 4-28.	15.8	110
69	The effect of exit Reynolds number on soot volume fraction in turbulent non-premixed jet flames. Combustion and Flame, 2018, 187, 42-51.	2.8	30
70	Performance of a hybrid solar receiver combustor. AIP Conference Proceedings, 2018, , .	0.3	1
71	The influence of aspect ratio on the iso-thermal flow characteristics of multiple confined jets. Physics of Fluids, 2018, 30, 125108.	1.6	6
72	Combined solar energy and combustion of hydrogen-based fuels under MILD conditions. International Journal of Hydrogen Energy, 2018, 43, 20086-20100.	3.8	13

#	Article	IF	Citations
73	Soot evolution and flame response to acoustic forcing of laminar non-premixed jet flames at varying amplitudes. Combustion and Flame, 2018, 198, 249-259.	2.8	15
74	Iso-thermal flow characteristics of rotationally symmetric jets generating a swirl within a cylindrical chamber. Physics of Fluids, 2018, 30, 055110.	1.6	11
75	Experimental demonstration of the hybrid solar receiver combustor. Applied Energy, 2018, 224, 426-437.	5.1	23
76	Influence of nozzle diameter on soot evolution in acoustically forced laminar non-premixed flames. Combustion and Flame, 2018, 194, 376-386.	2.8	23
77	A pressurized high-flux solar reactor for the efficient thermochemical gasification of carbonaceous feedstock. Fuel, 2017, 193, 432-443.	3.4	61
78	Thermodynamic potential of high temperature chemical looping combustion with molten iron oxide as the oxygen carrier. Chemical Engineering Research and Design, 2017, 120, 69-81.	2.7	24
79	Simultaneous measurements of gas temperature, soot volume fraction and primary particle diameter in a sooting lifted turbulent ethylene/air non-premixed flame. Combustion and Flame, 2017, 179, 33-50.	2.8	51
80	The Topology of a Precessing Flow Within a Suddenly Expanding Axisymmetric Chamber. Journal of Fluids Engineering, Transactions of the ASME, 2017, 139, .	0.8	3
81	Gasification Reactivity and Physicochemical Properties of the Chars from Raw and Torrefied Wood, Grape Marc, and Macroalgae. Energy & Samp; Fuels, 2017, 31, 2246-2259.	2.5	24
82	An investigation into the effect of aspect ratio on the heat loss from a solar cavity receiver. Solar Energy, 2017, 149, 20-31.	2.9	28
83	Solar-driven alumina calcination for CO ₂ mitigation and improved product quality. Green Chemistry, 2017, 19, 2992-3005.	4.6	34
84	Experimental investigation of acoustic forcing on temperature, soot volume fraction and primary particle diameter in non-premixed laminar flames. Combustion and Flame, 2017, 181, 270-282.	2.8	31
85	Techno-economic evaluation of modular hybrid concentrating solar power systems. Energy, 2017, 129, 158-170.	4.5	9
86	The effect of exit strain rate on soot volume fraction in turbulent non-premixed jet flames. Proceedings of the Combustion Institute, 2017, 36, 889-897.	2.4	42
87	The relative performance of alternative oxygen carriers for liquid chemical looping combustion and gasification. International Journal of Hydrogen Energy, 2017, 42, 16396-16407.	3.8	40
88	Approaches to accommodate resource variability in the modelling of solar driven gasification processes for liquid fuels synthesis. Solar Energy, 2017, 156, 101-112.	2.9	16
89	Thermodynamic potential of molten copper oxide for high temperature solar energy storage and oxygen production. Applied Energy, 2017, 201, 69-83.	5.1	36
90	High temperature solar thermochemical process for production of stored energy and oxygen based on CuO/Cu 2 O redox reactions. Solar Energy, 2017, 153, 1-10.	2.9	31

#	Article	IF	CITATIONS
91	New Understanding of Mode Switching in the Fluidic Precessing Jet Flow. Journal of Fluids Engineering, Transactions of the ASME, 2017, 139, .	0.8	2
92	Potential use of liquid metal oxides for chemical looping gasification: A thermodynamic assessment. Applied Energy, 2017, 195, 702-712.	5.1	63
93	Optical thermometry for high temperature multiphase environments under high-flux irradiation. Solar Energy, 2017, 146, 191-198.	2.9	1
94	Comparison of system performance in a hybrid solar receiver combustor operating with MILD and conventional combustion. Part I: Solar-only and combustion-only employing conventional combustion. Solar Energy, 2017, 147, 489-503.	2.9	20
95	Comparison of system performance in a hybrid solar receiver combustor operating with MILD and conventional combustion. Part II: Effect of the combustion mode. Solar Energy, 2017, 147, 479-488.	2.9	21
96	Impact of the operation of non-displaced feedwater heaters on the performance of Solar Aided Power Generation plants. Energy Conversion and Management, 2017, 135, 1-8.	4.4	39
97	Effects of hydrogen and nitrogen on soot volume fraction, primary particle diameter and temperature in laminar ethylene/air diffusion flames. Combustion and Flame, 2017, 175, 270-282.	2.8	77
98	System Optimization for Fischer–Tropsch Liquid Fuels Production via Solar Hybridized Dual Fluidized Bed Gasification of Solid Fuels. Energy & Energy & 2017, 31, 2033-2043.	2.5	18
99	Concentrating or non-concentrating solar collectors for solar Aided Power Generation?. Energy Conversion and Management, 2017, 152, 281-290.	4.4	31
100	Experimental and numerical investigation of the iso-thermal flow characteristics within a cylindrical chamber with multiple planar-symmetric impinging jets. Physics of Fluids, 2017, 29, 105111.	1.6	10
101	Development of ASTRI high-temperature solar receivers. AIP Conference Proceedings, 2017, , .	0.3	6
102	Flow behavior inside a novel rotating fluidized bed for solar gasification of biomass. AIP Conference Proceedings, 2017, , .	0.3	1
103	Experimental and numerical investigation of the flow characteristics within a Solar Expanding-Vortex Particle Receiver-Reactor. Solar Energy, 2017, 141, 25-37.	2.9	19
104	A method for identifying and characterising particle clusters in a two-phase turbulent jet. International Journal of Multiphase Flow, 2017, 88, 191-204.	1.6	16
105	Research challenges in combustion and gasification arising from emerging technologies employing directly irradiated concentrating solar thermal radiation. Proceedings of the Combustion Institute, 2017, 36, 2055-2074.	2.4	34
106	Impact of acoustic forcing on soot evolution and temperature in ethylene-air flames. Proceedings of the Combustion Institute, 2017, 36, 781-788.	2.4	24
107	Hydrodynamic and chemical effects of hydrogen addition on soot evolution in turbulent nonpremixed bluff body ethylene flames. Proceedings of the Combustion Institute, 2017, 36, 807-814.	2.4	29
108	Single-shot planar temperature imaging of radiatively heated fluidized particles. Optics Express, 2017, 25, 28764.	1.7	5

#	Article	IF	CITATIONS
109	Assessing the techno-economics of modular hybrid solar thermal systems. AIP Conference Proceedings, 2017, , .	0.3	5
110	Comparing the thermodynamic potential of alternative liquid metal oxides for the storage of solar thermal energy. Solar Energy, 2017, 157, 251-258.	2.9	25
111	Development of the ASTRI heliostat. AIP Conference Proceedings, 2016, , .	0.3	3
112	The influence of high flux broadband irradiation on soot concentration and temperature of a sooty flame. Combustion and Flame, 2016, 171, 103-111.	2.8	11
113	Techno-economic assessment of a hybrid solar receiver and combustor. AIP Conference Proceedings, 2016, , .	0.3	13
114	Analytical assessment of a novel rotating fluidized bed solar reactor for steam gasification of char particles. Solar Energy, 2016, 140, 113-123.	2.9	8
115	Particleâ€Scale Investigation of Heat Transfer in Radiationâ€Driven Char Gasification. Chemical Engineering and Technology, 2016, 39, 1903-1911.	0.9	4
116	The effect of Stokes number on particle velocity and concentration distributions in a well-characterised, turbulent, co-flowing Atwo-phase jet. Journal of Fluid Mechanics, 2016, 809, 72-110.	1.4	75
117	Secondary Concentrators to Achieve High Flux Radiation With Metal Halide Solar Simulators. Journal of Solar Energy Engineering, Transactions of the ASME, 2016, 138, .	1.1	4
118	Storage capacity assessment of liquid fuels production by solar gasification in a packed bed reactor using a dynamic process model. Applied Energy, 2016, 173, 578-588.	5.1	10
119	The performance of a Solar Aided Power Generation plant with diverse "configuration-operation― combinations. Energy Conversion and Management, 2016, 124, 155-167.	4.4	45
120	Assessment of the potential benefits and constraints of a hybrid solar receiver and combustor operated in the MILD combustion regime. Energy, 2016, 116, 735-745.	4.5	21
121	Effect of High-Flux Solar Irradiation on the Gasification of Coal in a Hybrid Entrained-Flow Reactor. Energy &	2.5	14
122	A Novel Solar Expanding-Vortex Particle Reactor: Experimental and Numerical Investigation of the Iso-thermal Flow Field and Particle Deposition. Solar Energy, 2016, 133, 451-464.	2.9	26
123	Impact of start-up and shut-down losses on the economic benefit of an integrated hybrid solar cavity receiver and combustor. Applied Energy, 2016, 164, 10-20.	5.1	19
124	Analytical assessment of a novel hybrid solar tubular receiver and combustor. Applied Energy, 2016, 162, 298-307.	5.1	21
125	Improvement of precision and accuracy of temperature imaging in sooting flames using two-line atomic fluorescence (TLAF). Combustion and Flame, 2016, 167, 481-493.	2.8	23
126	The Dynamic Performance of Different Configurations of Solar Aided Power Generation (SAPG). , 2016, , .		0

#	Article	IF	CITATIONS
127	Numerical modelling of flows in a solar-enhanced vortex gasifier: Part 1, comparison of turbulence models. Progress in Computational Fluid Dynamics, 2015, 15, 114.	0.1	14
128	Fischer-tropschliquid Fuel Production by Co-gasification of Coal and Biomass in a Solar Hybrid Dual Fluidized Bed Gasifier. Energy Procedia, 2015, 69, 1770-1779.	1.8	11
129	Velocity and orientation distributions of fibrous particles in the near-field of a turbulent jet. Powder Technology, 2015, 276, 10-17.	2.1	9
130	Simultaneous planar measurements of temperature and soot volume fraction in a turbulent non-premixed jet flame. Proceedings of the Combustion Institute, 2015, 35, 1931-1938.	2.4	50
131	Temporal release of potassium from pinewood particles during combustion. Combustion and Flame, 2015, 162, 496-505.	2.8	55
132	Single-shot, Time-Resolved planar Laser-Induced Incandescence (TiRe-LII) for soot primary particle sizing in flames. Proceedings of the Combustion Institute, 2015, 35, 3673-3680.	2.4	45
133	Storage capacities required for a solar thermal plant to avoid unscheduled reductions in output. Solar Energy, 2015, 118, 209-221.	2.9	28
134	Performance Assessment of Fischerâ€"Tropsch Liquid Fuels Production by Solar Hybridized Dual Fluidized Bed Gasification of Lignite. Energy & Energy & 2738-2751.	2.5	35
135	Time-resolved spectra of solar simulators employing metal halide and xenon arc lamps. Solar Energy, 2015, 115, 613-620.	2.9	47
136	Planar laser-induced incandescence of turbulent sooting flames: the influence of beam steering and signal trapping. Applied Physics B: Lasers and Optics, 2015, 119, 731-743.	1.1	31
137	Effect of heliostat design wind speed on the levelised cost of electricity from concentrating solar thermal power tower plants. Solar Energy, 2015, 115, 441-451.	2.9	41
138	A Novel Solar Expanding-Vortex Particle Reactor: Influence of Vortex Structure on Particle Residence Times and Trajectories. Solar Energy, 2015, 122, 58-75.	2.9	56
139	Concentric multilayer model of the arc in high intensity discharge lamps for solar simulators with experimental validation. Solar Energy, 2015, 122, 293-306.	2.9	32
140	Solar Hybridized Coal-to-liquids via Gasification in Australia: Techno-economic Assessment. Energy Procedia, 2015, 69, 1819-1827.	1.8	12
141	Mechanism for laser-induced fluorescence signal generation in a nanoparticle-seeded flow for planar flame thermometry. Applied Physics B: Lasers and Optics, 2015, 118, 209-218.	1.1	17
142	Global characteristics of non-premixed jet flames of hydrogen–hydrocarbon blended fuels. Combustion and Flame, 2015, 162, 1326-1335.	2.8	20
143	A hybrid solar chemical looping combustion system with a high solar share. Applied Energy, 2014, 126, 69-77.	5.1	33
144	Economic evaluation of a novel fuel-saver hybrid combining a solar receiver with a combustor for a solar power tower. Applied Energy, 2014, 113, 1235-1243.	5.1	55

#	Article	IF	Citations
145	Temperature imaging of turbulent dilute spray flames using two-line atomic fluorescence. Experiments in Fluids, $2014, 55, 1$.	1.1	18
146	Algorithm for soot sheet quantification in a piloted turbulent jet non-premixed natural gas flame. Experiments in Fluids, 2014, 55, 1.	1.1	18
147	Influence of sidewalls on the centerline small-scale turbulence of a turbulent high-aspect-ratio rectangular jet. Experimental Thermal and Fluid Science, 2014, 58, 139-144.	1.5	2
148	Influence of the Type of Oxygen Carriers on the Performance of a Hybrid Solar Chemical Looping Combustion System. Energy & Samp; Fuels, 2014, 28, 2914-2924.	2.5	20
149	The energetic performance of a novel hybrid solar thermal & mp; chemical looping combustion plant. Applied Energy, 2014, 132, 74-85.	5.1	36
150	The influence of aspect ratio on distributions of settling velocities and orientations of long fibres. Powder Technology, 2014, 257, 192-197.	2.1	9
151	Influence of Stokes number on the velocity and concentration distributions in particle-laden jets. Journal of Fluid Mechanics, 2014, 757, 432-457.	1.4	94
152	Optics and Photonics in Solar Thermal Energy Technologies. , 2014, , .		0
153	Experimental and computational study of soot evolution in a turbulent nonpremixed bluff body ethylene flame. Combustion and Flame, 2013, 160, 1298-1309.	2.8	55
154	A hybrid solar and chemical looping combustion system for solar thermal energy storage. Applied Energy, 2013, 103, 671-678.	5.1	63
155	Temperature measurements in turbulent non-premixed flames by two-line atomic fluorescence. Proceedings of the Combustion Institute, 2013, 34, 3619-3627.	2.4	23
156	The influence of high intensity solar radiation on the temperature and reduction of an oxygen carrier particle in hybrid chemical looping combustion. Chemical Engineering Science, 2013, 95, 331-342.	1.9	18
157	Dynamic Modeling of the Coproduction of Liquid Fuels and Electricity from a Hybrid Solar Gasifier with Various Fuel Blends. Energy & Samp; Fuels, 2013, 27, 3556-3569.	2.5	26
158	Similarity analysis of the momentum field of a subsonic, plane air jet with varying jet-exit and local Reynolds numbers. Physics of Fluids, 2013, 25, .	1.6	25
159	Polygeneration of Liquid Fuels and Electricity by the Atmospheric Pressure Hybrid Solar Gasification of Coal. Energy & E	2.5	49
160	Aerodynamics of long fibres settling in air at 10 <re<100. 2013,="" 235,="" 550-555.<="" powder="" td="" technology,=""><td>2.1</td><td>7</td></re<100.>	2.1	7
161	New Seeding Methodology for Gas Concentration Measurements. Applied Spectroscopy, 2012, 66, 803-809.	1.2	15
162	PTV measurement of drag coefficient of fibrous particles with large aspect ratio. Powder Technology, 2012, 229, 261-269.	2.1	17

#	Article	IF	Citations
163	The potential role of data-centres in enabling investment in geothermal energy. Applied Energy, 2012, 98, 458-466.	5.1	11
164	Flow seeding with elemental metal species via an optical method. Applied Physics B: Lasers and Optics, 2012, 107, 665-668.	1.1	18
165	The effects of temperature and hydrodynamics on the crystallization fouling under cross flow conditions. Applied Thermal Engineering, 2012, 36, 210-218.	3.0	38
166	The use of turbulence generators to mitigate crystallization fouling under cross flow conditions. Desalination, 2012, 288, 108-117.	4.0	22
167	The influences of particle mass loading on mean and instantaneous particle distributions in precessing jet flows. International Journal of Multiphase Flow, 2012, 41, 13-22.	1.6	16
168	Recent advances in the measurement of strongly radiating, turbulent reacting flows. Progress in Energy and Combustion Science, 2012, 38, 41-61.	15.8	72
169	Sodium and Potassium Released from Burning Particles of Brown Coal and Pine Wood in a Laminar Premixed Methane Flame Using Quantitative Laser-Induced Breakdown Spectroscopy. Applied Spectroscopy, 2011, 65, 684-691.	1.2	68
170	The influence on the soot distribution within a laminar flame of radiation at fluxes of relevance to concentrated solar radiation. Combustion and Flame, 2011, 158, 1814-1821.	2.8	24
171	Soot sheet dimensions in turbulent nonpremixed flames. Combustion and Flame, 2011, 158, 2458-2464.	2.8	22
172	Mechanism and kinetics of sodium release from brown coal char particles during combustion. Combustion and Flame, 2011, 158, 2512-2523.	2.8	86
173	Assessment of interferences to nonlinear two-line atomic fluorescence (NTLAF) in sooty flames. Applied Physics B: Lasers and Optics, 2011, 104, 189-198.	1.1	17
174	A method to provide statistical measures of large-scale instantaneous particle clusters from planar images. Experiments in Fluids, 2011, 51, 641-656.	1.1	13
175	Influence of a combustion-driven oscillation on global mixing in the flame from a refinery flare. Experimental Thermal and Fluid Science, 2011, 35, 199-210.	1.5	5
176	The release of water-bound and organic sodium from Loy Yang coal during the combustion of single particles in a flat flame. Combustion and Flame, 2011, 158, 1181-1192.	2.8	106
177	The influences of jet precession on large-scale instantaneous turbulent particle clusters. International Journal of Multiphase Flow, 2011, 37, 394-402.	1.6	10
178	Simultaneous imaging of temperature and soot volume fraction. Proceedings of the Combustion Institute, 2011, 33, 791-798.	2.4	41
179	The effect of density ratio on the near field of a naturally occurring oscillating jet. Experiments in Fluids, 2010, 48, 69-80.	1.1	8
180	RANS modeling of a particulate turbulent round jet. Chemical Engineering Science, 2010, 65, 3384-3393.	1.9	7

#	Article	lF	Citations
181	Influence of stoichiometry on the release of atomic sodium from a burning black liquor droplet in a flat flame with and without boron. Fuel, 2010, 89, 2608-2616.	3.4	1
182	Influence of droplet size on the release of atomic sodium from a burning black liquor droplet in a flat flame. Fuel, 2010, 89, 1840-1848.	3.4	7
183	Alternative carriers for remote renewable energy sources using existing CNG infrastructure. International Journal of Hydrogen Energy, 2010, 35, 1321-1329.	3.8	41
184	Simultaneous measurement of the surface temperature and the release of atomic sodium from a burning black liquor droplet. Combustion and Flame, 2010, 157, 769-777.	2.8	11
185	Effect of a uniform electric field on soot in laminar premixed ethylene/air flames. Combustion and Flame, 2010, 157, 1308-1315.	2.8	33
186	Solvent effects on two-line atomic fluorescence of indium. Applied Optics, 2010, 49, 1257.	2.1	18
187	Instantaneous Temperature Imaging of Diffusion Flames Using Two-Line Atomic Fluorescence. Applied Spectroscopy, 2010, 64, 173-176.	1.2	20
188	Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas. Combustion and Flame, 2009, 156, 1339-1347.	2.8	117
189	Assessment of the release of atomic Na from a burning black liquor droplet using quantitative PLIF. Combustion and Flame, 2009, 156, 1471-1479.	2.8	11
190	Scaling of the gas phase in particle-laden turbulent axisymmetric jets. International Journal of Multiphase Flow, 2009, 35, 96-100.	1.6	5
191	The influences of jet precession on near field particle distributions. International Journal of Multiphase Flow, 2009, 35, 288-296.	1.6	7
192	Simultaneous measurements of the release of atomic sodium, particle diameter and particle temperature for a single burning coal particle. Proceedings of the Combustion Institute, 2009, 32, 2099-2106.	2.4	49
193	Operational characteristics of a parallel jet MILD combustion burner system. Combustion and Flame, 2009, 156, 429-438.	2.8	179
194	Planar measurements of soot volume fraction and OH in a JP-8 pool fire. Combustion and Flame, 2009, 156, 1480-1492.	2.8	16
195	Development of temperature imaging using two-line atomic fluorescence. Applied Optics, 2009, 48, 1237.	2.1	57
196	Scaling of NOx emissions from a laboratory-scale mild combustion furnace. Combustion and Flame, 2008, 154, 281-295.	2.8	140
197	Quantitative measurement of atomic sodium in the plume of a single burning coal particle. Combustion and Flame, 2008, 155, 529-537.	2.8	64
198	Puffing Frequency and Soot Extinction Correlation in JP-8 and Heptane Pool Fires. Combustion Science and Technology, 2008, 180, 699-712.	1,2	14

#	Article	IF	CITATIONS
199	The influence of Reynolds number on a plane jet. Physics of Fluids, 2008, 20, .	1.6	108
200	The naturally oscillating flow emerging from a fluidic precessing jet nozzle. Journal of Fluid Mechanics, 2008, 606, 153-188.	1.4	15
201	Corrections to facilitate planar imaging of particle concentration in particle-laden flows using Mie scattering, Part 1: Collimated laser sheets. Applied Optics, 2007, 46, 5823.	2.1	30
202	Corrections to facilitate planar imaging of particle concentration in particle-laden flows using Mie scattering Part 2: Diverging laser sheets. Applied Optics, 2007, 46, 7227.	2.1	21
203	The influence of nozzle aspect ratio on plane jets. Experimental Thermal and Fluid Science, 2007, 31, 825-838.	1.5	80
204	Investigation of a combustion driven oscillation in a refinery flare. Experimental Thermal and Fluid Science, 2007, 31, 1091-1101.	1.5	4
205	PIV measurements of a turbulent jet issuing from round sharp-edged plate. Experiments in Fluids, 2007, 42, 625-637.	1.1	106
206	The influence of nozzle-exit geometric profile on statistical properties of a turbulent plane jet. Experimental Thermal and Fluid Science, 2007, 32, 545-559.	1.5	70
207	Comparison of turbulent jets issuing from rectangular nozzles with and without sidewalls. Experimental Thermal and Fluid Science, 2007, 32, 596-606.	1.5	55
208	The influence of geometric nozzle profile on the global properties of a turbulent diffusion flame. Proceedings of the Combustion Institute, 2007, 31, 1599-1607.	2.4	27
209	Investigation of a combustion driven oscillation in a refinery flare. Part A: Full scale assessment. Experimental Thermal and Fluid Science, 2006, 30, 285-295.	1.5	7
210	Impacts of a jet's exit flow pattern on mixing and combustion performance. Progress in Energy and Combustion Science, 2006, 32, 496-538.	15.8	116
211	The influence of inlet flow condition on the frequency of self-excited jet precession. Journal of Fluids and Structures, 2006, 22, 129-133.	1.5	13
212	A MODIFIED THRING–NEWBY SCALING CRITERION FOR CONFINED, RAPIDLY SPREADING, AND UNSTEADY JETS. Combustion Science and Technology, 2005, 177, 1421-1447.	1.2	11
213	The effect of global mixing on soot volume fraction: measurements in simple jet, precessing jet, and bluff body flames. Proceedings of the Combustion Institute, 2005, 30, 1493-1500.	2.4	57
214	The Effect of Reynolds Number on the Passive Scalar Field in the Turbulent Wake of a Circular Cylinder. Flow, Turbulence and Combustion, 2004, 72, 311-331.	1.4	6
215	Self-excited jet-precession Strouhal number and its influence on downstream mixing field. Journal of Fluids and Structures, 2004, 19, 851-862.	1.5	23
216	The effect of initial conditions on the exit flow from a fluidic precessing jet nozzle. Experiments in Fluids, 2004, 36, 70-81.	1.1	20

#	Article	IF	CITATIONS
217	The influence of probe resolution on the measurement of a passive scalar and its derivatives. Experiments in Fluids, 2003, 34, 687-696.	1.1	55
218	Phase-averaged velocity in a fluidic precessing jet nozzle and in its near external field. Experimental Thermal and Fluid Science, 2003, 27, 515-524.	1.5	32
219	Low kinetic-energy loss oscillating-triangular-jet nozzles. Experimental Thermal and Fluid Science, 2003, 27, 553-561.	1.5	10
220	The significance of particle clustering in pulverized coal flames. Proceedings of the Combustion Institute, 2002, 29, 797-804.	2.4	23
221	Mixing Characteristics of a Flapping Jet from a Self-Exciting Nozzle. Flow, Turbulence and Combustion, 2001, 67, 1-23.	1.4	44
222	Measurement and prediction of NOx emissions from unconfined propane flames from turbulent-jet, bluff-body, swirl, and precessing jet burners. Proceedings of the Combustion Institute, 2000, 28, 481-487.	2.4	31
223	Centreline mixing characteristics of jets from nine differently shaped nozzles. Experiments in Fluids, 2000, 28, 93-94.	1.1	138
224	Effect of small vortex-generators on scalar mixing in the developing region of a turbulent jet. International Journal of Heat and Mass Transfer, 1999, 42, 3919-3926.	2.5	29
225	Precessing jet burners for stable and low NOx pulverised fuel flames â€" preliminary results from small-scale trials. Fuel, 1998, 77, 1013-1016.	3.4	15
226	The role of fuel-rich clusters in flame stabilization and NOx emission reduction with precessing jet pulverized fuel flames. Proceedings of the Combustion Institute, 1998, 27, 3173-3179.	0.3	8
227	Non-gaussian statistics of a passive scalar in turbulent flows. Proceedings of the Combustion Institute, 1998, 27, 989-995.	0.3	3
228	Large–Scale Dynamics of an Unconfined Precessing Jet Flame. Combustion Science and Technology, 1997, 126, 71-95.	1.2	22
229	The Influence of Fuel Jet Precession on the Global Properties and Emissions of Unconfined Turbulent Flames. Combustion Science and Technology, 1996, 112, 211-230.	1.2	28
230	THE ROLE OF PROCESS AND FLAME INTERACTION IN REDUCING NOx EMISSIONS. , 1995, , 309-318.		6
231	Reduced NOx emissions and enhanced large scale turbulence from a precessing jet burner. Proceedings of the Combustion Institute, 1992, 24, 1399-1405.	0.3	18
232	A Modified Thermodynamic Model to Estimate the Performance of Geothermal Aided Power Generation Plant. Advanced Materials Research, 0, 347-353, 2875-2878.	0.3	1