
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/570863/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased CO ₂ /N ₂ selectivity of PTMSP by surface crosslinking. Chemical Communications, 2022, 58, 3557-3560.	2.2	3
2	Creating Hyperthin Membranes for Gas Separations. Langmuir, 2022, 38, 4490-4493.	1.6	3
3	Cholesterol's Condensing Effect: Unpacking a Century-Old Mystery. Jacs Au, 2022, 2, 84-91.	3.6	8
4	Membrane-Disrupting Molecules as Therapeutic Agents: A Cautionary Note. Jacs Au, 2021, 1, 3-7.	3.6	14
5	Improving the Cellular Selectivity of a Membrane-Disrupting Antimicrobial Agent by Monomer Control and by Taming. Molecules, 2021, 26, 374.	1.7	2
6	Defect Repair of Polyelectrolyte Bilayers Using SDS: The Action of Micelles Versus Monomers. Langmuir, 2021, 37, 5306-5310.	1.6	2
7	Hyperthin Membranes for Gas Separations via Layerâ€byâ€Layer Assembly. Chemical Record, 2020, 20, 163-173.	2.9	7
8	Clicking the Surface of Poly[1-(trimethylsilyl)propyne] (PTMSP) via a Thiol–Ene Reaction: Unexpected CO2/N2 Permeability. Langmuir, 2020, 36, 1768-1772.	1.6	6
9	The Origin of Lipid Rafts. Biochemistry, 2020, 59, 4617-4621.	1.2	24
10	Layer-by-layer assembly of a polymer of intrinsic microporosity: targeting the CO ₂ /N ₂ separation problem. Chemical Communications, 2019, 55, 4347-4350.	2.2	9
11	Layer-by-Layer Assembly Modulated by Host–Guest Binding. ACS Applied Polymer Materials, 2019, 1, 141-144.	2.0	8
12	Net Interactions That Push Cholesterol Away from Unsaturated Phospholipids Are Driven by Enthalpy. Biochemistry, 2018, 57, 6637-6643.	1.2	6
13	Synthetic Immunotherapeutics against Gram-negative Pathogens. Cell Chemical Biology, 2018, 25, 1185-1194.e5.	2.5	29
14	A plug and socket approach for tightening polyelectrolyte multilayers. Chemical Communications, 2018, 54, 9769-9772.	2.2	4
15	Lipid Raft Formation: Key Role of Polyunsaturated Phospholipids. Angewandte Chemie - International Edition, 2017, 56, 1639-1642.	7.2	31
16	Lipid Raft Formation: Key Role of Polyunsaturated Phospholipids. Angewandte Chemie, 2017, 129, 1661-1664.	1.6	12
17	p <i>K</i> _a -Dependent Facilitated Transport of CO ₂ across Hyperthin Polyelectrolyte Multilayers. ACS Applied Materials & Interfaces, 2017, 9, 19525-19528.	4.0	19
18	Lipid Raft Formation Driven by Push and Pull Forces. Bulletin of the Chemical Society of Japan, 2017, 90, 1083-1087.	2.0	15

#	Article	IF	CITATIONS
19	Consequences of Tacticity on the Growth and Permeability of Hyperthin Polyelectrolyte Multilayers. Langmuir, 2016, 32, 375-379.	1.6	7
20	Gas Permeability of Hyperthin Polyelectrolyte Multilayers Having Matched and Mismatched Repeat Units. Langmuir, 2016, 32, 12332-12337.	1.6	4
21	Tightening Polyelectrolyte Multilayers with Oligo Pendant Ions. ACS Macro Letters, 2016, 5, 915-918.	2.3	10
22	Simple Strategy for Taming Membrane-Disrupting Antibiotics. Bioconjugate Chemistry, 2016, 27, 2850-2853.	1.8	10
23	Evidence for Surface Recognition by a Cholesterol-Recognition Peptide. Biophysical Journal, 2016, 110, 2577-2580.	0.2	5
24	Exchangeable Mimics of DPPC and DPPG Exhibiting Similar Nearest-Neighbor Interactions in Fluid Bilayers. Langmuir, 2015, 31, 12674-12678.	1.6	7
25	Push and Pull Forces in Lipid Raft Formation: The Push Can Be as Important as the Pull. Journal of the American Chemical Society, 2015, 137, 664-666.	6.6	45
26	Peptide Recognition of Cholesterol in Fluid Phospholipid Bilayers. Journal of the American Chemical Society, 2015, 137, 12518-12520.	6.6	4
27	Splaying hyperthin polyelectrolyte multilayers to increase their gas permeability. Chemical Communications, 2015, 51, 1439-1441.	2.2	6
28	Taming Amphotericin B. Bioconjugate Chemistry, 2015, 26, 2021-2024.	1.8	31
29	Eliminating the Roughness in Cholesterol's β-Face: Does it Matter?. Langmuir, 2014, 30, 12114-12118.	1.6	11
30	Polyelectrolyte Multilayers on PTMSP as Asymmetric Membranes for Gas Separations: Langmuir–Blodgett versus Self-Assembly Methods of Anchoring. Langmuir, 2014, 30, 687-691.	1.6	34
31	The Structural Role of Cholesterol in Cell Membranes: From Condensed Bilayers to Lipid Rafts. Accounts of Chemical Research, 2014, 47, 3512-3521.	7.6	171
32	Push–Pull Mechanism for Lipid Raft Formation. Langmuir, 2014, 30, 3285-3289.	1.6	34
33	Surface Occupancy Plays a Major Role in Cholesterol's Condensing Effect. Langmuir, 2013, 29, 10303-10306.	1.6	9
34	Unexpected barrier properties of structurally matched and unmatched polyelectrolyte multilayers. Chemical Communications, 2013, 49, 3576.	2.2	18
35	Towards Squalamine Mimics: Synthesis and Antibacterial Activities of Headâ€ŧoâ€₹ail Dimeric SterolPolyamine Conjugates. Chemistry and Biodiversity, 2013, 10, 385-393.	1.0	12
36	A 7 nm Thick Polymeric Membrane With a H ₂ /CO ₂ Selectivity of 200 That Reaches the Upper Bound. Chemistry of Materials, 2013, 25, 3785-3787.	3.2	20

#	Article	IF	CITATIONS
37	Gas Transport across Hyperthin Membranes. Accounts of Chemical Research, 2013, 46, 2743-2754.	7.6	34
38	Sorting of Lipidated Peptides in Fluid Bilayers: A Molecular-Level Investigation. Journal of the American Chemical Society, 2012, 134, 17245-17252.	6.6	16
39	Effects of Isoflurane, Halothane, and Chloroform on the Interactions and Lateral Organization of Lipids in the Liquid-Ordered Phase. Langmuir, 2011, 27, 14380-14385.	1.6	29
40	The Origin of Cholesterol's Condensing Effect. Langmuir, 2011, 27, 2159-2161.	1.6	57
41	Creating Poly(ethylene oxide)-Based Polyelectrolytes for Thin Film Construction Using an Ionic Linker Strategy. Chemistry of Materials, 2010, 22, 1285-1287.	3.2	15
42	An Upside Down View of Cholesterol's Condensing Effect: Does Surface Occupancy Play a Role?. Langmuir, 2010, 26, 5316-5318.	1.6	12
43	Glued Langmuirâ^'Blodgett Bilayers from Calix[n]arenes: Influence of Calix[n]arene Size on Ionic Cross-Linking, Film Thickness, and Permeation Selectivity. Langmuir, 2010, 26, 12988-12993.	1.6	17
44	Oxysterol-Induced Rearrangement of the Liquid-Ordered Phase: A Possible Link to Alzheimer's Disease?. Journal of the American Chemical Society, 2009, 131, 12354-12357.	6.6	23
45	Loosening and Reorganization of Fluid Phospholipid Bilayers by Chloroform. Journal of the American Chemical Society, 2009, 131, 5068-5069.	6.6	37
46	Defects in a Polyelectrolyte Multilayer: The Inside Story. Journal of the American Chemical Society, 2008, 130, 16510-16511.	6.6	30
47	Polymer-Enhanced Stability of Glued Langmuirâ d'Blodgett Monolayers. Macromolecules, 2008, 41, 497-500.	2.2	5
48	Detecting Cross Talk between Two Halves of a Phospholipid Bilayer. Langmuir, 2007, 23, 8709-8712.	1.6	18
49	A Bioconjugate Approach toward Squalamine Mimics:Â Insight into the Mechanism of Biological Action. Bioconjugate Chemistry, 2006, 17, 1582-1591.	1.8	39
50	Cholesterol-Phospholipid Association in Fluid Bilayers: A Thermodynamic Analysis from Nearest-Neighbor Recognition Measurements. Biophysical Journal, 2006, 91, 1402-1406.	0.2	21
51	Sticky Monolayers and Defect-Free Langmuirâ^'Blodgett Bilayers Using Poly(acrylamide) Clue. Chemistry of Materials, 2006, 18, 5065-5069.	3.2	11
52	Transbilayer Complementarity of Phospholipids in Cholesterol-Rich Membranes. Biochemistry, 2005, 44, 3598-3603.	1.2	16
53	A Chemical Sensor for the Liquid-Ordered Phase. Journal of the American Chemical Society, 2005, 127, 8813-8816.	6.6	26
54	Don't forget Langmuir–Blodgett films. Chemical Communications, 2004, , 2787-2791.	2.2	74

#	Article	IF	CITATIONS
55	The Gluing of a Langmuirâ^'Blodgett Bilayer. Journal of the American Chemical Society, 2003, 125, 8094-8095.	6.6	35
56	Influence of the Linkage Region of Sphingolipids on Sphingolipidâ^'Phospholipid Mixing in Cholesterol-Rich Bilayersâ€. Langmuir, 2003, 19, 6363-6366.	1.6	4
57	Selective Sterol-Phospholipid Associations in Fluid Bilayers. Journal of the American Chemical Society, 2002, 124, 4253-4256.	6.6	34
58	Sugar-Based Lipid Headgroups:  How Sticky Are They?. Langmuir, 2002, 18, 981-983.	1.6	1
59	Hydrophobic Sponges: Resin-Bound Surfactants as Organic Scavengersâ€,‡. Macromolecules, 2002, 35, 8243-8246.	2.2	6
60	Cholesterol-Modulated Lipidâ^'Peptide Communication in Fluid Bilayers. Langmuir, 2002, 18, 9635-9637.	1.6	2
61	Lipid–lipid recognition in fluid bilayers: solving the cholesterol mystery. Current Opinion in Chemical Biology, 2002, 6, 729-735.	2.8	39
62	Is the Linkage Region of Sphingolipids Responsible for Lipid Raft Formation?. Journal of the American Chemical Society, 2001, 123, 5124-5125.	6.6	14
63	Molecular Umbrella-Assisted Transport of Glutathione Across a Phospholipid Membrane. Journal of the American Chemical Society, 2001, 123, 5401-5406.	6.6	54
64	Transmembrane-Peptide-Induced Clustering of Phospholipids. Langmuir, 2001, 17, 4413-4415.	1.6	4
65	The Structural Role of Cholesterol in Biological Membranes. Journal of the American Chemical Society, 2001, 123, 7939-7940.	6.6	44
66	An Ion Conductor Derived from Spermine and Cholic Acid. Journal of the American Chemical Society, 2000, 122, 12888-12889.	6.6	43
67	Underquaternized Anion Exchange Resins as Covalent Scavengers. Organic Letters, 2000, 2, 2157-2160.	2.4	3
68	Influence of Headgroup Chirality on the Mixing Behavior of Phosphatidylglycerol Mimics in Fluid Bilayers. Langmuir, 2000, 16, 3491-3496.	1.6	16
69	Insight into the Permeation Selectivity of Calix[n]arene-Based Langmuirâ^'Blodgett Films:Â Importance of Headgroup Association and the Solid Phase. Langmuir, 1998, 14, 6545-6549.	1.6	18
70	Kinetics of Exchange of a Resin-Bound Bile Acid by Chloride Ion under Mild Flow Conditionsâ€,â€j. Macromolecules, 1998, 31, 5542-5545.	2.2	6
71	lon Exchange Resins as Emergingâ^'Submerging Chemical Sensors. Chemistry of Materials, 1998, 10, 855-859.	3.2	2
72	Lipidâ^'Peptide Communication in Fluid Bilayers. Journal of the American Chemical Society, 1998, 120, 3758-3761.	6.6	17

#	Article	IF	CITATIONS
73	Sterolâ^'Polyamine Conjugates as Synthetic Ionophores. Journal of the American Chemical Society, 1998, 120, 8494-8501.	6.6	72
74	Efficacies of KY62 against <i>Leishmania amazonensis</i> and <i>Leishmania donovani</i> in Experimental Murine Cutaneous Leishmaniasis and Visceral Leishmaniasis. Antimicrobial Agents and Chemotherapy, 1998, 42, 2542-2548.	1.4	20
75	KY-62, a Polyene Analog of Amphotericin B, for Treatment of Murine Candidiasis. Antimicrobial Agents and Chemotherapy, 1998, 42, 147-150.	1.4	16
76	Nearest-Neighbor Recognition in Phospholipid Membranes. Chemical Reviews, 1997, 97, 1269-1280.	23.0	105
77	Assembly and Disassembly of Langmuirâ^'Blodgett Films on Poly[1-(trimethylsilyl)-1-propyne]:Â The Uniqueness of Calix[6]arene Multilayers as Permeation-Selective Membranes. Journal of the American Chemical Society, 1997, 119, 6909-6918.	6.6	44
78	Evidence for Highly Cooperative Binding between Molecular Umbrellaâ^'Spermine Conjugates and DNA. Bioconjugate Chemistry, 1997, 8, 891-895.	1.8	16
79	Lateral Heterogeneity in Fluid Bilayers Composed of Saturated and Unsaturated Phospholipids. Journal of the American Chemical Society, 1996, 118, 3435-3440.	6.6	35
80	Extraordinary Cohesiveness of a Boronic Acid-Based Calix[6]arene Monolayer at the Airâ^'Water Interface. Langmuir, 1996, 12, 5745-5746.	1.6	10
81	Rapid Construction of a Squalamine Mimic. Journal of the American Chemical Society, 1995, 117, 6138-6139.	6.6	69
82	Micelle/Monomer Control over the Membrane-Disrupting Properties of an Amphiphilic Antibiotic. Journal of the American Chemical Society, 1995, 117, 6249-6253.	6.6	45
83	Molecular sieving by a perforated Langmuir-Blodgett film. Journal of the American Chemical Society, 1993, 115, 1178-1180.	6.6	53
84	Cholesterol-induced nearest-neighbor recognition in a fluid phospholipid membrane. Journal of the American Chemical Society, 1993, 115, 1198-1199.	6.6	14
85	Perforated monolayers: fabrication of calix[6]arene-based composite membranes that function as molecular sieves. Langmuir, 1993, 9, 2389-2397.	1.6	52
86	Control over vesicle rupture and leakage by membrane packing and by the aggregation state of an attacking surfactant. Journal of the American Chemical Society, 1993, 115, 708-713.	6.6	51
87	The influence of cholesterol on nearest-neighbor recognition in saturated phospholipid membranes. Journal of the American Chemical Society, 1993, 115, 10104-10110.	6.6	16
88	Nearest-neighbor recognition in phospholipid membranes: a molecular-level approach to the study of membrane suprastructure. Journal of the American Chemical Society, 1992, 114, 9828-9835.	6.6	66
89	Nearest-neighbor recognition in phospholipid bilayers. Probing lateral organization at the molecular level. Journal of the American Chemical Society, 1991, 113, 8175-8177.	6.6	22
90	Membrane-disrupting surfactants that are highly selective toward lipid bilayers of varying cholesterol content. Journal of the American Chemical Society, 1991, 113, 7237-7240.	6.6	37

#	Article	IF	CITATIONS
91	Perforated monolayers: porous and cohesive monolayers from mercurated calix[6]arenes. Journal of the American Chemical Society, 1988, 110, 7545-7546.	6.6	46
92	Polymerized-depolymerized vesicles. Reversible thiol-disulfide-based phosphatidylcholine membranes. Journal of the American Chemical Society, 1985, 107, 42-47.	6.6	101
93	Polymerized-depolymerized vesicles. A reversible phosphatidylcholine-based membrane. Journal of the American Chemical Society, 1983, 105, 6354-6355.	6.6	36
94	Polymerized vesicles. Journal of the American Chemical Society, 1980, 102, 6638-6640.	6.6	193