Carlos Luz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5708600/publications.pdf

Version: 2024-02-01

430874 501196 34 862 18 28 h-index citations g-index papers 34 34 34 1005 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	InÂvitro antifungal activity of lactic acid bacteria against mycotoxigenic fungi and their application in loaf bread shelf life improvement. Food Control, 2016, 67, 273-277.	5.5	71
2	Toxicity reduction of ochratoxin A by lactic acid bacteria. Food and Chemical Toxicology, 2018, 112, 60-66.	3.6	71
3	InÂvitro antifungal activity of bioactive peptides produced by Lactobacillus plantarum against Aspergillus parasiticus and Penicillium expansum. LWT - Food Science and Technology, 2017, 81, 128-135.	5.2	57
4	Biopreservation potential of lactic acid bacteria from Andean fermented food of vegetal origin. Food Control, 2017, 78, 393-400.	5 . 5	56
5	Potential Application of Lactic Acid Bacteria to Reduce Aflatoxin B1 and Fumonisin B1 Occurrence on Corn Kernels and Corn Ears. Toxins, 2020, 12, 21.	3.4	49
6	Antimicrobial packaging based on É-polylysine bioactive film for the control of mycotoxigenic fungi in vitro and in bread. Journal of Food Processing and Preservation, 2018, 42, e13370.	2.0	44
7	Evaluation of fermentation assisted by Lactobacillus brevis POM, and Lactobacillus plantarum (TR-7,) Tj ETQq1 Chemistry, 2021, 343, 128414.	1 0.784314 8.2	4 rgBT /Over <mark>lo</mark> 38
8	Antifungal effect of phenolic extract of fermented rice bran with <i>Rhizopus oryzae</i> and its potential use in loaf bread shelf life extension. Journal of the Science of Food and Agriculture, 2018, 98, 5011-5018.	3.5	36
9	Biopreservation of tomatoes using fermented media by lactic acid bacteria. LWT - Food Science and Technology, 2020, 130, 109618.	5.2	36
10	Occurrence, toxicity, bioaccessibility and mitigation strategies of beauvericin, a minor Fusarium mycotoxin. Food and Chemical Toxicology, 2017, 107, 430-439.	3.6	35
11	Antifungal and antimycotoxigenic activity of hydrolyzed goat whey on Penicillium spp: An application as biopreservation agent in pita bread. LWT - Food Science and Technology, 2020, 118, 108717.	5.2	30
12	Phylogeny and Mycotoxin Characterization of Alternaria Species Isolated from Wheat Grown in Tuscany, Italy. Toxins, 2018, 10, 472.	3.4	29
13	Evaluation of biological and antimicrobial properties of freeze-dried whey fermented by different strains of <i>Lactobacillus plantarum </i> . Food and Function, 2018, 9, 3688-3697.	4.6	27
14	Development of an Antifungal and Antimycotoxigenic Device Containing Allyl Isothiocyanate for Silo Fumigation. Toxins, 2019, 11, 137.	3.4	25
15	Bio-Preservative Potential of Microorganisms Isolated from Red Grape against Food Contaminant Fungi. Toxins, 2021, 13, 412.	3.4	22
16	Whey fermented by using Lactobacillus plantarum strains: A promising approach to increase the shelf life of pita bread. Journal of Dairy Science, 2020, 103, 5906-5915.	3.4	21
17	Inhibition of Mycotoxigenic Fungi in Different Vegetable Matrices by Extracts of Trichoderma Species. Journal of Fungi (Basel, Switzerland), 2021, 7, 445.	3.5	21
18	Impact of Fermentation on the Recovery of Antioxidant Bioactive Compounds from Sea Bass Byproducts. Antioxidants, 2020, 9, 239.	5.1	20

#	Article	IF	CITATIONS
19	Influence of probiotic microorganisms on aflatoxins B 1 and B 2 bioaccessibility evaluated with a simulated gastrointestinal digestion. Journal of Food Composition and Analysis, 2018, 68, 128-132.	3.9	19
20	Antifungal activity and shelf life extension of loaf bread produced with sourdough fermented by <i>Lactobacillus</i> strains. Journal of Food Processing and Preservation, 2019, 43, e14126.	2.0	18
21	A natural strategy to improve the shelf life of the loaf bread against toxigenic fungi: The employment of fermented whey powder. International Journal of Dairy Technology, 2020, 73, 88-97.	2.8	17
22	Probiotic characterization of Lactobacillus strains isolated from breast milk and employment for the elaboration of a fermented milk product. Journal of Functional Foods, 2021, 84, 104599.	3.4	16
23	Potential application of lactic acid bacteria in the biopreservation of red grape from mycotoxigenic fungi. Journal of the Science of Food and Agriculture, 2022, 102, 898-907.	3.5	15
24	Use of Botanicals to Suppress Different Stages of the Life Cycle of <i>Fusarium graminearum</i> Phytopathology, 2019, 109, 2116-2123.	2.2	14
25	Antifungal Activity of Biocontrol Agents In Vitro and Potential Application to Reduce Mycotoxins (Aflatoxin B1 and Ochratoxin A). Toxins, 2021, 13, 752.	3.4	11
26	Inhibitory Activity of Shrimp Waste Extracts on Fungal and Oomycete Plant Pathogens. Plants, 2021, 10, 2452.	3.5	11
27	Inhibitory effect of sweet whey fermented by <i>Lactobacillus plantarum</i> strains against fungal growth: A potential application as an antifungal agent. Journal of Food Science, 2020, 85, 3920-3926.	3.1	10
28	Application of whey of Mozzarella di Bufala Campana fermented by lactic acid bacteria as a bread biopreservative agent. International Journal of Food Science and Technology, 2021, 56, 4585-4593.	2.7	10
29	Antifungal activity of peracetic acid against toxigenic fungal contaminants of maize and barley at the postharvest stage. LWT - Food Science and Technology, 2021, 148, 111754.	5.2	8
30	Antifungal properties of whey fermented by lactic acid bacteria in films for the preservation of cheese slices. International Journal of Dairy Technology, 2022, 75, 619-629.	2.8	7
31	Devices containing allyl isothiocyanate against the growth of spoilage and mycotoxigenic fungi in mozzarella cheese. Journal of Food Processing and Preservation, 2018, 42, e13779.	2.0	6
32	Shelf life extension of mozzarella cheese contaminated with <i>Penicillium</i> spp. using the antifungal compound É-polylysine. Food Science and Technology International, 2019, 25, 295-302.	2.2	6
33	Isolation, Identification and Investigation of Fermentative Bacteria from Sea Bass (Dicentrarchus) Tj ETQq1 1 0. 2020, 9, 576.	784314 rg 4.3	BT /Overlock 6
34	Action of phenolic extract obtained from rice bran fermented with Rhizopus oryzae in the synthesis of trichothecenes and emerging mycotoxins in sweet corn. Food Science and Technology, 0, 42, .	1.7	0