Shahram Minaei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5708409/publications.pdf

Version: 2024-02-01

126858 197736 3,071 116 33 49 citations h-index g-index papers 116 116 116 493 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Novel Voltage-Mode All-Pass Filter Based onÂUsingÂDVCCs. Circuits, Systems, and Signal Processing, 2010, 29, 391-402.	1.2	114
2	A Modified CFOA and Its Applications to Simulated Inductors, Capacitance Multipliers, and Analog Filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55, 266-275.	3.5	107
3	New resistorless and electronically tunable realization of dual-output VM all-pass filter using VDIBA. Analog Integrated Circuits and Signal Processing, 2013, 74, 141-154.	0.9	104
4	Positive/negative lossy/lossless grounded inductance simulators employing single VDCC and only two passive elements. AEU - International Journal of Electronics and Communications, 2014, 68, 73-78.	1.7	101
5	Universal current-mode filters and parasitic impedance effects on the filter performances. International Journal of Circuit Theory and Applications, 2008, 36, 161-171.	1.3	96
6	Limitations of the Simulated Inductors Based on a Single Current Conveyor. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2006, 53, 2860-2867.	0.1	81
7	A Versatile Active Circuit for Realising Floating Inductance, Capacitance, FDNR and Admittance Converter. Analog Integrated Circuits and Signal Processing, 2006, 47, 199-202.	0.9	79
8	General configuration for realizing current-mode first-order all-pass filter using DVCC. International Journal of Electronics, 2005, 92, 347-356.	0.9	76
9	A mixedâ€mode KHNâ€biquad using DVCC and grounded passive elements suitable for direct cascading. International Journal of Circuit Theory and Applications, 2009, 37, 793-810.	1.3	76
10	A Novel Grounded Inductor Realization Using a Minimum Number of Active and Passive Components. ETRI Journal, 2005, 27, 427-432.	1.2	75
11	All-Grounded Passive Elements Voltage-Mode DVCC-Based Universal Filters. Circuits, Systems, and Signal Processing, 2010, 29, 295-309.	1.2	68
12	Resistorless floating immittance function simulators employing current controlled conveyors and a grounded capacitor. Electrical Engineering, 2006, 88, 519-525.	1,2	64
13	A Simple Schmitt Trigger Circuit with Grounded Passive Elements and Its Application to Square/Triangular Wave Generator. Circuits, Systems, and Signal Processing, 2012, 31, 877-888.	1.2	63
14	CCII-Based Grounded to Floating Immittance Converter and a Floating Inductance Simulator. Analog Integrated Circuits and Signal Processing, 2006, 46, 287-291.	0.9	58
15	DXCCII-based grounded inductance simulators and filter applications. Microelectronics Journal, 2011, 42, 1074-1081.	1.1	56
16	A new full-wave rectifier circuit employing single dual-X current conveyor. International Journal of Electronics, 2008, 95, 777-784.	0.9	55
17	New CCII-based versatile structure for realizing PID controller and instrumentation amplifier. Microelectronics Journal, 2010, 41, 311-316.	1.1	55
18	On the Realization of Simulated Inductors withÂReduced Parasitic Impedance Effects. Circuits, Systems, and Signal Processing, 2009, 28, 451-465.	1.2	51

#	Article	IF	CITATIONS
19	Memstor, memstance simulations via a versatile 4-port built with new adder and subtractor circuits. International Journal of Electronics, 2015, 102, 911-931.	0.9	49
20	NOVEL FLOATING INDUCTANCE AND FDNR SIMULATORS EMPLOYING CCII+s. Journal of Circuits, Systems and Computers, 2006, 15, 75-81.	1.0	48
21	A low power current controllable single-input three-output current-mode filter using MOS transistors only. AEU - International Journal of Electronics and Communications, 2014, 68, 1205-1213.	1.7	48
22	Electronically tunable, active only floating inductance simulation. International Journal of Electronics, 2003, 89, 905-912.	0.9	47
23	Current-Mode Electronically Tunable Universal Filter Using Only Plus-Type Current Controlled Conveyors and Grounded Capacitors. ETRI Journal, 2004, 26, 292-296.	1.2	47
24	Universal Current-Mode Active-C Filter Employing Minimum Number of Passive Elements. Analog Integrated Circuits and Signal Processing, 2006, 46, 169-171.	0.9	45
25	Unity/Variable-gain Voltage-mode/Current-mode First-order All-pass Filters Using Single Dual-X Second-generation Current Conveyor. IETE Journal of Research, 2010, 56, 305-312.	1.8	45
26	New current-mode current-controlled universal filter with single input and three outputs. International Journal of Electronics, 2001, 88, 333-337.	0.9	41
27	A new ICCII based resistor-less current-mode first-order universal filter with electronic tuning capability. Microelectronics Journal, 2017, 67, 101-110.	1.1	41
28	A First-Order Fully Cascadable Current-Mode Universal Filter Composed of Dual Output CCIIs and a Grounded Capacitor. Journal of Circuits, Systems and Computers, 2016, 25, 1650042.	1.0	38
29	A secondâ€generation voltage conveyor (VCII)–based simulated grounded inductor. International Journal of Circuit Theory and Applications, 2020, 48, 1180-1193.	1.3	38
30	High output impedance current-mode lowpass, bandpass and highpass filters using current controlled conveyors. International Journal of Electronics, 2001, 88, 915-922.	0.9	37
31	ICCII-based universal current-mode analog filter employing only grounded passive components. Analog Integrated Circuits and Signal Processing, 2009, 58, 161-169.	0.9	36
32	New CFOA-based first-order all-pass filters and their applications. AEU - International Journal of Electronics and Communications, 2019, 103, 57-63.	1.7	35
33	Component reduced currentâ€mode fullâ€wave rectifier circuits using single active component. IET Circuits, Devices and Systems, 2016, 10, 1-11.	0.9	34
34	On the realization of high-order current-mode filter employing current controlled conveyors. Computers and Electrical Engineering, 2008, 34, 165-172.	3.0	33
35	Novel floating simulated inductors with wider operating-frequency ranges. Microelectronics Journal, 2009, 40, 928-938.	1.1	33
36	High Input Impedance NMOS-based Phase Shifter with Minimum Number of Passive Elements. Circuits, Systems, and Signal Processing, 2012, 31, 51-60.	1.2	31

3

#	Article	lF	Citations
37	REALIZATION OF FIRST-ORDER CURRENT-MODE FILTERS WITH LOW NUMBER OF MOS TRANSISTORS. Journal of Circuits, Systems and Computers, 2013, 22, 1250071.	1.0	31
38	A Novel Resistor-Free Electronically Adjustable Current-Mode Instrumentation Amplifier. Circuits, Systems, and Signal Processing, 2013, 32, 1025-1038.	1.2	29
39	Design and application examples of CMOS fractional-order differentiators and integrators. Microelectronics Journal, 2019, 83, 155-167.	1.1	27
40	ELECTRONICALLY TUNABLE CURRENT-MODE UNIVERSAL BIQUAD FILTER USING DUAL-X CURRENT CONVEYORS. Journal of Circuits, Systems and Computers, 2009, 18, 665-680.	1.0	26
41	Ultra low-power electronically tunable current-mode instrumentation amplifier for biomedical applications. AEU - International Journal of Electronics and Communications, 2020, 117, 153120.	1.7	26
42	A simple CMOS-based inductor simulator and frequency performance improvement techniques. AEU - International Journal of Electronics and Communications, 2012, 66, 884-891.	1.7	25
43	A new DVCC-based fully cascadable voltage-mode full-wave rectifier. Journal of Computational Electronics, 2016, 15, 1440-1449.	1.3	25
44	Root-Mean-Square Measurement of Distinct Voltage Signals. IEEE Transactions on Instrumentation and Measurement, 2007, 56, 2782-2787.	2.4	23
45	ALL GROUNDED PASSIVE ELEMENTS CURRENT-MODE ALL-PASS FILTER. Journal of Circuits, Systems and Computers, 2009, 18, 31-43.	1.0	23
46	An Electronically Fine-Tunable Multi-Input–Single-Output Universal Filter. IEEE Transactions on Circuits and Systems II: Express Briefs, 2011, 58, 356-360.	2.2	23
47	Allâ€pass sections with rich cascadability and IC realization suitability. International Journal of Circuit Theory and Applications, 2012, 40, 477-488.	1.3	23
48	CMOS FIRST-ORDER CURRENT-MODE ALL-PASS FILTER WITH ELECTRONIC TUNING CAPABILITY AND ITS APPLICATIONS. Journal of Circuits, Systems and Computers, 2013, 22, 1350007.	1.0	23
49	Electronically Tunable Simulated Transformer and Its Application to Stagger-Tuned Filter. IEEE Transactions on Instrumentation and Measurement, 2008, 57, 2083-2088.	2.4	22
50	ICCII-Based Voltage-Mode Filter with Single Input and Six Outputs Employing Grounded Capacitors. Circuits, Systems, and Signal Processing, 2006, 25, 559-566.	1.2	21
51	A novel phase shifter using two NMOS transistors and passive elements. Analog Integrated Circuits and Signal Processing, 2010, 62, 77-81.	0.9	20
52	NOVEL CMOS TECHNOLOGY-BASED LINEAR GROUNDED VOLTAGE CONTROLLED RESISTOR. Journal of Circuits, Systems and Computers, 2011, 20, 447-455.	1.0	20
53	A novel COA-based electronically adjustable current-mode instrumentation amplifier topology. AEU - International Journal of Electronics and Communications, 2017, 82, 285-293.	1.7	20
54	Commercially Available Active Device Based Grounded Inductor Simulator and Universal Filter with Improved Low Frequency Performances. Journal of Circuits, Systems and Computers, 2017, 26, 1750052.	1.0	20

#	Article	IF	CITATIONS
55	Low voltage low power CMOS current differencing buffered amplifier. Analog Integrated Circuits and Signal Processing, 2010, 62, 237-244.	0.9	19
56	A new first-order universal filter consisting of two ICCII $\hat{A}+\hat{A}s$ and a grounded capacitor. AEU - International Journal of Electronics and Communications, 2021, 137, 153802.	1.7	19
57	A Low-Voltage Low-Power Resistor-Based Current Mirror and Its Applications. Journal of Circuits, Systems and Computers, 2017, 26, 1750180.	1.0	18
58	New simple transistor realizations of second―generation voltage conveyor. International Journal of Circuit Theory and Applications, 2020, 48, 2023-2038.	1.3	18
59	A New Simulated Inductor with Reduced Series Resistor Using a Single VCII±. Electronics (Switzerland), 2021, 10, 1693.	1.8	18
60	Realization of arbitrary current transfer functions based on commercially available CCII + s. International Journal of Circuit Theory and Applications, 2014, 42, 659-670.	1.3	17
61	A New Transresistance-Mode Instrumentation Amplifier with Low Number of MOS Transistors and Electronic Tuning Opportunity. Journal of Circuits, Systems and Computers, 2016, 25, 1650022.	1.0	17
62	Analysis and design of a new COA-based current-mode instrumentation amplifier with robust performance against mismatches. AEU - International Journal of Electronics and Communications, 2018, 89, 105-109.	1.7	17
63	New mixedâ€mode secondâ€generation voltage conveyor based firstâ€order allâ€pass filter. IET Circuits, Devices and Systems, 2020, 14, 901-907.	0.9	17
64	Inverting voltage buffer based lossless grounded inductor simulators. AEU - International Journal of Electronics and Communications, 2018, 83, 131-137.	1.7	16
65	CURRENT-MODE ACTIVE-C FILTER EMPLOYING REDUCED NUMBER OF CCCII+s. Journal of Circuits, Systems and Computers, 2007, 16, 507-516.	1.0	15
66	A HIGH INPUT IMPEDANCE VOLTAGE-MODE ALL-PASS/NOTCH FILTER USING A SINGLE VARIABLE GAIN CURRENT CONVEYOR. Journal of Circuits, Systems and Computers, 2008, 17, 827-834.	1.0	15
67	Trade-offs in the OTA-based analog filter design. Analog Integrated Circuits and Signal Processing, 2009, 60, 205-213.	0.9	15
68	A new differential configuration suitable for realization of high CMRR, all-pass/notch filters. Electrical Engineering, 2006, 88, 317-326.	1.2	14
69	A NEW ACTIVE NETWORK SUITABLE FOR REALIZING LADDER FILTERS AND TRANSFORMER SIMULATOR. Journal of Circuits, Systems and Computers, 2007, 16, 29-41.	1.0	14
70	Derivation of low-power first-order low-pass, high-pass and all-pass filters. Analog Integrated Circuits and Signal Processing, 2012, 70, 151-156.	0.9	14
71	Low input impedance trans-impedance type multifunction filter using only active elements. International Journal of Electronics, 2005, 92, 385-392.	0.9	13
72	Realisation of (i>nth-order current transfer function employing ECCIIs and application examples. International Journal of Electronics, 2009, 96, 1115-1126.	0.9	13

#	Article	IF	Citations
73	A voltage-mode PID controller using a single CFOA and only grounded capacitors. Microelectronics Journal, 2018, 81, 84-93.	1.1	13
74	Enhanced dynamic range analog filter topologies with a notch/all-pass circuit example. Analog Integrated Circuits and Signal Processing, 2007, 51, 181-189.	0.9	12
75	Neural CMOS-Integrated Circuit and Its Application to Data Classification. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23, 717-724.	7.2	12
76	A novel full-wave rectifier/sinusoidal frequency doubler topology based on CFOAs. Analog Integrated Circuits and Signal Processing, 2017, 93, 351-362.	0.9	11
77	Fractional-Order and Power-Law Shelving Filters: Analysis and Design Examples. IEEE Access, 2021, 9, 145977-145987.	2.6	11
78	A CMOS Classifier Circuit Using Neural Networks With Novel Architecture. IEEE Transactions on Neural Networks, 2007, 18, 1845-1850.	4.8	10
79	Electronically tunable MOSFET-C voltage-mode all-pass filter based on universal voltage conveyor. , 2011, , .		10
80	Parasitic compensation in CCI-based circuits for reduced power consumption. Analog Integrated Circuits and Signal Processing, 2010, 65, 157-162.	0.9	9
81	CCII+ based fully CMOS four-quadrant multiplier. , 2011, , .		9
82	ON THE REALIZATION OF HIGH PERFORMANCE CURRENT CONVEYORS AND THEIR APPLICATIONS. Journal of Circuits, Systems and Computers, 2013, 22, 1350015.	1.0	9
83	Lossless grounded inductance simulation using only one modified dual output DDCC. , 2011, , .		8
84	Metamutator applications: a quadrature MOS only oscillator and transconductance/transimpedance amplifiers. Analog Integrated Circuits and Signal Processing, 2016, 89, 801-808.	0.9	8
85	HIGH-SLEW RATE LOW-QUIESCENT CURRENT RAIL-TO-RAIL CMOS BUFFER AMPLIFIER FOR FLAT PANEL DISPLAYS. Journal of Circuits, Systems and Computers, 2011, 20, 1277-1286.	1.0	7
86	A compact rail-to-rail CMOS buffer amplifier with very low quiescent current. International Journal of Electronics, 2015, 102, 982-992.	0.9	7
87	A simple low voltage, high output impedance resistor based current mirror with extremely low input and output voltage requirements. , 2016, , .		7
88	Modified Gorski-Popiel Technique and Synthetic Floating Transformer Circuit Using Minimum Components. Journal of Circuits, Systems and Computers, 2017, 26, 1750013.	1.0	7
89	Highâ€order realisation of MOSFETâ€only bandâ€pass filters for RF applications. IET Circuits, Devices and Systems, 2018, 12, 467-477.	0.9	7
90	± 0.45ÂV CMOS Second-Generation Voltage Conveyor Based on Super Source Follower. Circuits, Systems, and Signal Processing, 2022, 41, 1819-1833.	1.2	7

#	Article	IF	Citations
91	High-order current-mode low-pass, high-pass and band-pass filter responses employing CCCIIs., 2007,,.		6
92	A flexible currentâ€mode classifier circuit and its applications. International Journal of Circuit Theory and Applications, 2011, 39, 933-945.	1.3	6
93	Novel grounded capacitor-based resistorless tunable floating/grounded inductance simulator. , 2016, , .		6
94	New ECCII-based electronically controllable current-mode instrumentation amplifier with high frequency performance. , $2017, , .$		6
95	Towards Realization of a Low-Voltage Class-AB VCII with High Current Drive Capability. Electronics (Switzerland), 2021, 10, 2303.	1.8	6
96	Active only integrator and differentiator with tunable time constants. International Journal of Electronics, 2003, 90, 581-588.	0.9	5
97	A TUNABLE CIRCUIT FOR REALIZING ARBITRARY FLOATING IMPEDANCES. Journal of Circuits, Systems and Computers, 2008, 17, 513-524.	1.0	5
98	Synthetic Transformer Design Using Commercially Available Active Components. Circuits, Systems, and Signal Processing, 2020, 39, 3770-3786.	1.2	5
99	Firstâ€order inverse filters: Implementations using a single voltage conveyor and potential applications. International Journal of Circuit Theory and Applications, 2022, 50, 3704-3714.	1.3	5
100	Linearly weighted classifier circuit. , 2009, , .		4
101	A low-power multilevel-output classifier circuit. , 2007, , .		3
102	Dual output filter topology with a single NIC for pole frequency sensitive applications. International Journal of Electronics, 2009, 96, 699-710.	0.9	3
103	Low-voltage low-power and high-swing current differencing buffered amplifier. , 2009, , .		3
104	Voltage-mode multiphase sinusoidal oscillators using CBTAs., 2012,,.		3
105	Voltage-mode all-pass filter design using simple CMOS transconductor: Non-ideal case study. , 2015, , .		3
106	Fractional-Order Differentiators and Integrators with Reduced Circuit Complexity., 2018,,.		3
107	A novel design for voltage inverting metamutator and its applications. Microelectronics Journal, 2021, 113, 105096.	1.1	3
108	A New Active Device Namely S-CCI and Its Applications: Simulated Floating Inductor and Quadrature Oscillators. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 3554-3564.	3.5	3

#	Article	IF	CITATIONS
109	TO-CCII based voltage-mode universal biquadratic filter. , 2011, , .		2
110	Pulse Width Modulation using a recently developed CMOS core circuit., 2013,,.		2
111	CMOS Realization of a Quantized-Output Classifier Circuit. , 2006, , .		1
112	SIFO voltage-mode universal filters employing TO-CCIIs. , 2012, , .		1
113	Equivalent circuit models in current-mode circuits for time delay calculations. Analog Integrated Circuits and Signal Processing, 2014, 81, 43-52.	0.9	1
114	MOSFET â€based grounded active inductors with electronically tunable properties. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30, e22274.	0.8	1
115	An 8-Bit 50-MS/s CMOS Digital-Analog Converter. Analog Integrated Circuits and Signal Processing, 2004, 39, 213-217.	0.9	0
116	A current-mode sample-and-hold circuit with high accuracy. , 2007, , .		0