Erin Brooks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5708177/publications.pdf

Version: 2024-02-01

70 papers

1,774 citations

304602 22 h-index 302012 39 g-index

72 all docs

 $\begin{array}{c} 72 \\ \text{docs citations} \end{array}$

72 times ranked 2079 citing authors

#	Article	IF	CITATIONS
1	A GIS-based variable source area hydrology model. Hydrological Processes, 1999, 13, 805-822.	1.1	179
2	Process-based snowmelt modeling: does it require more input data than temperature-index modeling?. Journal of Hydrology, 2005, 300, 65-75.	2.3	141
3	Application of two hydrologic models with different runoff mechanisms to a hillslope dominated watershed in the northeastern US: a comparison of HSPF and SMR. Journal of Hydrology, 2003, 284, 57-76.	2.3	111
4	A hillslope-scale experiment to measure lateral saturated hydraulic conductivity. Water Resources Research, 2004, 40, .	1.7	111
5	Linking fragipans, perched water tables, and catchment-scale hydrological processes. Catena, 2008, 73, 166-173.	2.2	76
6	Key drivers controlling stable isotope variations in daily precipitation of Costa Rica: Caribbean Sea versus Eastern Pacific Ocean moisture sources. Quaternary Science Reviews, 2016, 131, 250-261.	1.4	68
7	Development and testing of a physically based, three-dimensional model of surface and subsurface hydrology. Advances in Water Resources, 2010, 33, 106-122.	1.7	58
8	Assessing carbon and water dynamics of no-till and conventional tillage cropping systems in the inland Pacific Northwest US using the eddy covariance method. Agricultural and Forest Meteorology, 2016, 218-219, 37-49.	1.9	52
9	Application of SMR to Modeling Watersheds in the Catskill Mountains. Environmental Modeling and Assessment, 2004, 9, 77-89.	1.2	51
10	Agricultural <scp>BMP</scp> Effectiveness and Dominant Hydrological Flow Paths: Concepts and a Review. Journal of the American Water Resources Association, 2015, 51, 305-329.	1.0	51
11	Spatial and Temporal Variation of Stable Isotopes in Precipitation across Costa Rica: An Analysis of Historic GNIP Records. Open Journal of Modern Hydrology, 2013, 03, 226-240.	0.4	45
12	Distributed and integrated response of a geographic information system-based hydrologic model in the eastern Palouse region, Idaho. Hydrological Processes, 2007, 21, 110-122.	1.1	42
13	Evaluating opportunities for an increased role of winter crops as adaptation to climate change in dryland cropping systems of the U.S. Inland Pacific Northwest. Climatic Change, 2018, 146, 247-261.	1.7	41
14	Isotope hydrology and baseflow geochemistry in natural and human-altered watersheds in the Inland Pacific Northwest, USA. Isotopes in Environmental and Health Studies, 2015, 51, 231-254.	0.5	37
15	Watershed-scale evaluation of the Water Erosion Prediction Project (WEPP) model in the Lake Tahoe basin. Journal of Hydrology, 2016, 533, 389-402.	2.3	37
16	Effects of land use on soil properties and hydrological processes at the point, plot, and catchment scale in volcanic soils near Turrialba, Costa Rica. Geoderma, 2018, 315, 138-148.	2.3	35
17	Model for Prioritizing Best Management Practice Implementation: Sediment Load Reduction. Environmental Management, 2013, 51, 209-224.	1.2	32
18	Evaluating postâ€wildfire loggingâ€slash cover treatment to reduce hillslope erosion after salvage logging using ground measurements and remote sensing. Hydrological Processes, 2020, 34, 4431-4445.	1.1	29

#	Article	IF	CITATIONS
19	Dynamic riparian buffer widths from potential non-point source pollution areas in forested watersheds. Forest Ecology and Management, 2008, 256, 664-673.	1.4	28
20	Assessing carbon dynamics at high and low rainfall agricultural sites in the inland Pacific Northwest US using the eddy covariance method. Agricultural and Forest Meteorology, 2016, 218-219, 25-36.	1.9	28
21	A Fieldâ€Scale Sensor Network Data Set for Monitoring and Modeling the Spatial and Temporal Variation of Soil Water Content in a Dryland Agricultural Field. Water Resources Research, 2017, 53, 10878-10887.	1.7	26
22	Mining the Drilosphere: Bacterial Communities and Denitrifier Abundance in a No-Till Wheat Cropping System. Frontiers in Microbiology, 2019, 10, 1339.	1.5	24
23	Modeling forest management effects on water and sediment yield from nested, paired watersheds in the interior Pacific Northwest, USA using WEPP. Science of the Total Environment, 2020, 701, 134877.	3.9	24
24	Comparative analysis of water budgets across the U.S. long-term agroecosystem research network. Journal of Hydrology, 2020, 588, 125021.	2.3	24
25	A Simple Processâ€Based Snowmelt Routine to Model Spatially Distributed Snow Depth and Snowmelt in the SWAT Model ¹ . Journal of the American Water Resources Association, 2012, 48, 1151-1161.	1.0	21
26	Variable Source Area Hydrology Modeling with the Water Erosion Prediction Project Model. Journal of the American Water Resources Association, 2015, 51, 330-342.	1.0	21
27	A pragmatic, automated approach for retroactive calibration of soil moisture sensors using a two-step, soil-specific correction. Computers and Electronics in Agriculture, 2017, 137, 29-40.	3.7	19
28	A Simulation Study to Estimate Effects of Wildfire and Forest Management on Hydrology and Sediment in a Forested Watershed, Northwestern U.S Transactions of the ASABE, 2018, 61, 1579-1601.	1,1	19
29	Assessing BMP Effectiveness and Guiding BMP Planning Using Processâ€Based Modeling. Journal of the American Water Resources Association, 2015, 51, 343-358.	1.0	16
30	Hydrologic control of dissolved organic matter concentration and quality in a semiarid artificially drained agricultural catchment. Water Resources Research, 2015, 51, 8146-8164.	1.7	15
31	Modifying WEPP to Improve Streamflow Simulation in a Pacific Northwest Watershed. Transactions of the ASABE, 2013, 56, 603-611.	1.1	14
32	Effects of Climatic Conditions and Management Practices on Agricultural Carbon and Water Budgets in the Inland Pacific Northwest USA. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3142-3160.	1.3	14
33	Modeling Streamflow in a Snow-Dominated Forest Watershed Using the Water Erosion Prediction Project (WEPP) Model. Transactions of the ASABE, 2017, 60, 1171-1187.	1.1	14
34	Title is missing!. Biogeochemistry, 2001, 55, 293-310.	1.7	13
35	HYDROLOGIC PROCESSES IN VALLEY SOILSCAPES OF THE EASTERN PALOUSE BASIN IN NORTHERN IDAHO. Soil Science, 2003, 168, 846-855.	0.9	13
36	Impact of Climate Change Adaptation Strategies on Winter Wheat and Cropping System Performance across Precipitation Gradients in the Inland Pacific Northwest, USA. Frontiers in Environmental Science, 2017, 5, .	1.5	13

#	Article	lF	CITATIONS
37	Global Positioning System/GIS-Based Approach for Modeling Erosion from Large Road Networks. Journal of Hydrologic Engineering - ASCE, 2006, 11, 418-426.	0.8	12
38	Groundwater recharge in Pleistocene sediments overlying basalt aquifers in the Palouse Basin, USA: modeling of distributed recharge potential and identification of water pathways. Hydrogeology Journal, 2011, 19, 489-500.	0.9	12
39	Hydropedology in Seasonally Dry Landscapes. , 2012, , 329-350.		12
40	Integrating Historic Agronomic and Policy Lessons with New Technologies to Drive Farmer Decisions for Farm and Climate: The Case of Inland Pacific Northwestern U.S Frontiers in Environmental Science, 2017, 5, .	1.5	12
41	Carbon and Water Budgets in Multiple Wheat-Based Cropping Systems in the Inland Pacific Northwest US: Comparison of CropSyst Simulations with Eddy Covariance Measurements. Frontiers in Ecology and Evolution, 2017, 5, .	1.1	11
42	Impacts of Historical Changes in Land Use and Dairy Herds on Water Quality in the Catskills Mountains. Journal of Environmental Quality, 1998, 27, 1410-1417.	1.0	10
43	Interaction of wind and coldâ€season hydrologic processes on erosion from complex topography following wildfire in sagebrush steppe. Earth Surface Processes and Landforms, 2020, 45, 841-861.	1.2	10
44	Identifying groundwater recharge connections in the Moscow (USA) sub-basin using isotopic tracers and a soil moisture routing model. Hydrogeology Journal, 2016, 24, 1739-1751.	0.9	9
45	WEPPcloud: An online watershed-scale hydrologic modeling tool. Part II. Model performance assessment and applications to forest management and wildfires. Journal of Hydrology, 2022, 610, 127776.	2.3	9
46	WEPPcloud: An online watershed-scale hydrologic modeling tool. Part I. Model description. Journal of Hydrology, 2022, 608, 127603.	2.3	9
47	WEPP simulations of dryland cropping systems in small drainages of northeastern Oregon. Journal of Soils and Water Conservation, 2010, 65, 22-33.	0.8	8
48	Water and nitrogen movement through a semiarid dryland agricultural catchment: Seasonal and decadal trends. Hydrological Processes, 2017, 31, 1889-1899.	1.1	8
49	Simulating field-scale variability and precision management with a 3D hydrologic cropping systems model. Precision Agriculture, 2018, 19, 293-313.	3.1	8
50	Noble gases, dead carbon, and reinterpretation of groundwater ages and travel time in local aquifers of the Columbia River Basalt Group. Journal of Hydrology, 2020, 581, 124400.	2.3	8
51	Effectiveness of postâ€fire salvage logging stream buffer management for hillslope erosion in the <scp>U.S.</scp> Inland Northwest Mountains. Hydrological Processes, 2021, 35, .	1.1	8
52	Pi-VAT: A web-based visualization tool for decision support using spatially complex water quality model outputs. Journal of Hydrology, 2022, 607, 127529.	2.3	8
53	Isotopic Discrimination of Aquifer Recharge Sources, Subsystem Connectivity and Flow Patterns in the South Fork Palouse River Basin, Idaho and Washington, USA. Hydrology, 2019, 6, 15.	1.3	7
54	Evaluating the effects of timber harvest on hydrologically sensitive areas and hydrologic response. Journal of Hydrology, 2021, 593, 125805.	2.3	7

#	Article	IF	CITATIONS
55	Tracing Î'18O and Î'2H in Source Waters and Recharge Pathways of a Fractured-Basalt and Interbedded-Sediment Aquifer, Columbia River Flood Basalt Province. Geosciences (Switzerland), 2021, 11, 400.	1.0	6
56	Seasonal Risk Analysis for Floodplains in the Delaware River Basin. Journal of Water Resources Planning and Management - ASCE, 2000, 126, 320-329.	1.3	5
57	Long-term response in nutrient load from commercial forest management operations in a mountainous watershed. Forest Ecology and Management, 2021, 494, 119312.	1.4	5
58	Ecohydrological analysis of Steelhead (<i>Oncorhynchus mykiss</i>) habitat in an effluent dependent stream in the Pacific Northwest, USA. Ecohydrology, 2014, 7, 557-568.	1.1	4
59	Development and application of the soil moisture routing (SMR) model to identify subfield-scale hydrologic classes in dryland cropping systems using the Budyko framework. Journal of Hydrology, 2019, 573, 153-167.	2.3	4
60	Sources and subsurface transport of dissolved reactive phosphorus in a semiarid, noâ€till catchment with complex topography. Journal of Environmental Quality, 2020, 49, 1286-1297.	1.0	4
61	Pâ€FLUX: A phosphorus budget dataset spanning diverse agricultural production systems in the United States and Canada. Journal of Environmental Quality, 2022, 51, 451-461.	1.0	4
62	On the Role of Spatial, Temporal, and Climatic Forces on Stream Sediment Loading from Rural and Urban Ecosystems. Journal of the American Water Resources Association, 2017, 53, 1195-1211.	1.0	3
63	Snow cover analysis in Emilia-Romagna. European Journal of Remote Sensing, 2011, , 59-73.	0.2	3
64	Water Distribution Management in Small West African Canal Systems. Journal of Irrigation and Drainage Engineering - ASCE, 2000, 126, 304-313.	0.6	2
65	Enhancements to the Water Erosion Prediction Project (WEPP) for Modeling Large Snow-Dominated Mountainous Forest Watersheds. , 2015, , .		2
66	Featured Collection Introduction: Synthesis and Analysis of Conservation Effects Assessment Projects for Improved Water Quality. Journal of the American Water Resources Association, 2015, 51, 302-304.	1.0	1
67	WEPPcloud hydrologic and erosion simulation datasets from 28 watersheds in US Pacific Northwest and calibrating model parameters for undisturbed and disturbed forest management conditions. Data in Brief, 2022, 42, 108251.	0.5	1
68	Soil Heterogeneity and the Hydrology of the High Precipitation Zone of the Palouse Region., 2006,,.		0
69	DESIGNING EROSION AND NUTRIENT CONTROL PRACTICES IN WATERSHEDS IN HUMID REGIONS: LESSONS LEARNED., 2017, , .		0
70	Filter Membrane Effects on Waterâ€Extractable Phosphorus Concentrations from Soil. Journal of Environmental Quality, 2018, 47, 378-382.	1.0	0