List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5708161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing SOFC cathode performance by surface modification through infiltration. Energy and Environmental Science, 2014, 7, 552.	15.6	680
2	Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy, 2015, 11, 154-161.	8.2	379
3	Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy, 2015, 16, 71-80.	8.2	354
4	Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors. Nano Energy, 2019, 57, 22-33.	8.2	279
5	Triple onducting Layered Perovskites as Cathode Materials for Proton onducting Solid Oxide Fuel Cells. ChemSusChem, 2014, 7, 2811-2815.	3.6	257
6	Advances in Cathode Materials for Solid Oxide Fuel Cells: Complex Oxides without Alkaline Earth Metal Elements. Advanced Energy Materials, 2015, 5, 1500537.	10.2	229
7	Recent Advances in Intensified Ethylene Production—A Review. ACS Catalysis, 2019, 9, 8592-8621.	5.5	227
8	Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production. Nature Communications, 2020, 11, 1907.	5.8	227
9	Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for high-performance asymmetric supercapacitors. Energy Storage Materials, 2019, 16, 632-645.	9.5	225
10	Probing the Charge Storage Mechanism of a Pseudocapacitive MnO ₂ Electrode Using <i>in Operando</i> Raman Spectroscopy. Chemistry of Materials, 2015, 27, 6608-6619.	3.2	212
11	A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells. Energy and Environmental Science, 2017, 10, 964-971.	15.6	204
12	Phase evolution of an alpha MnO 2 -based electrode for pseudo-capacitors probed by in operando Raman spectroscopy. Nano Energy, 2014, 9, 161-167.	8.2	195
13	Crystallinity Dependence of Ruthenium Nanocatalyst toward Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 5714-5720.	5.5	162
14	Enhanced performance of LSCF cathode through surface modification. International Journal of Hydrogen Energy, 2012, 37, 8613-8620.	3.8	161
15	Oxygen- and Nitrogen-Enriched 3D Porous Carbon for Supercapacitors of High Volumetric Capacity. ACS Applied Materials & Interfaces, 2015, 7, 24622-24628.	4.0	156
16	Efficient Electro atalysts for Enhancing Surface Activity and Stability of SOFC Cathodes. Advanced Energy Materials, 2013, 3, 1149-1154.	10.2	144
17	Fabrication and modification of solid oxide fuel cell anodes via wet impregnation/infiltration technique. Journal of Power Sources, 2013, 237, 243-259.	4.0	140
18	Enhanced electrochemical properties of a LiNiO ₂ -based cathode material by removing lithium residues with (NH ₄) ₂ HPO ₄ . Journal of Materials Chemistry A, 2014, 2, 11691-11696.	5.2	135

#	Article	IF	CITATIONS
19	Revitalizing interface in protonic ceramic cells by acid etch. Nature, 2022, 604, 479-485.	13.7	132
20	Controllable interior structure of ZnCo2O4 microspheres for high-performance lithium-ion batteries. Nano Energy, 2015, 11, 64-70.	8.2	120
21	A Highly Efficient and Robust Nanofiber Cathode for Solid Oxide Fuel Cells. Advanced Energy Materials, 2017, 7, 1601890.	10.2	109
22	An Active and Robust Air Electrode for Reversible Protonic Ceramic Electrochemical Cells. ACS Energy Letters, 0, , 1511-1520.	8.8	109
23	Surface modification of LiNi0.8Co0.1Mn0.1O2 with conducting polypyrrole. Journal of Solid State Electrochemistry, 2014, 18, 2619-2624.	1.2	103
24	Cation deficiency enabled fast oxygen reduction reaction for a novel SOFC cathode with promoted CO2 tolerance. Applied Catalysis B: Environmental, 2019, 243, 546-555.	10.8	97
25	Enhancement in Three-Phase Boundary of SOFC Electrodes by an Ion Impregnation Method: A Modeling Comparison. Electrochemical and Solid-State Letters, 2008, 11, B83.	2.2	93
26	A durable, high-performance hollow-nanofiber cathode for intermediate-temperature fuel cells. Nano Energy, 2016, 26, 90-99.	8.2	93
27	A novel low-thermal-budget approach for the co-production of ethylene and hydrogen <i>via</i> the electrochemical non-oxidative deprotonation of ethane. Energy and Environmental Science, 2018, 11, 1710-1716.	15.6	92
28	High reactive Ce0.8Sm0.2O1.9 powders via a carbonate co-precipitation method as electrolytes for low-temperature solid oxide fuel cells. Solid State Ionics, 2008, 179, 896-899.	1.3	86
29	Electrical properties of ceria-carbonate composite electrolytes. Materials Research Bulletin, 2006, 41, 2057-2064.	2.7	84
30	Non-oxidative dehydrogenation of ethane to ethylene over ZSM-5 zeolite supported iron catalysts. Applied Catalysis B: Environmental, 2019, 256, 117816.	10.8	84
31	A-site Excessive (La _{0.8} Sr _{0.2}) _{1+<i>x</i>} MnO ₃ Perovskite Oxides for Bifunctional Oxygen Catalyst in Alkaline Media. ACS Catalysis, 2019, 9, 5074-5083.	5.5	84
32	One-step synthesis of architectural Ni3S2 nanosheet-on-nanorods array for use as high-performance electrodes for supercapacitors. NPG Asia Materials, 2016, 8, e300-e300.	3.8	80
33	Switching of metal–oxygen hybridization for selective CO2 electrohydrogenation under mild temperature and pressure. Nature Catalysis, 2021, 4, 274-283.	16.1	77
34	An Efficient SOFC Based on Samaria-Doped Ceria (SDC) Electrolyte. Journal of the Electrochemical Society, 2012, 159, B661-B665.	1.3	76
35	An effective strategy to enhancing tolerance to contaminants poisoning of solid oxide fuel cell cathodes. Nano Energy, 2018, 47, 474-480.	8.2	76
36	3D Selfâ€Architectured Steam Electrode Enabled Efficient and Durable Hydrogen Production in a Proton onducting Solid Oxide Electrolysis Cell at Temperatures Lower Than 600 °C. Advanced Science, 2018, 5, 1800360.	5.6	72

DONG DING

#	Article	IF	CITATIONS
37	Perspectives on the Active Sites and Catalyst Design for the Hydrogenation of Dimethyl Oxalate. ACS Catalysis, 2020, 10, 4465-4490.	5.5	69
38	An Efficient Bifunctional Air Electrode for Reversible Protonic Ceramic Electrochemical Cells. Advanced Functional Materials, 2021, 31, 2105386.	7.8	66
39	Aluminum and Nitrogen Codoped Graphene: Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction. ACS Catalysis, 2019, 9, 610-619.	5.5	56
40	High-performance cathode-supported SOFCs prepared by a single-step co-firing process. Journal of Power Sources, 2008, 182, 585-588.	4.0	55
41	Flexible multiphysics simulation of porous electrodes: Conformal to 3D reconstructed microstructures. Nano Energy, 2013, 2, 105-115.	8.2	55
42	Co,N-codoped graphene as efficient electrocatalyst for hydrogen evolution reaction: Insight into the active centre. Journal of Power Sources, 2017, 363, 260-268.	4.0	55
43	In Situ Probing of the Mechanisms of Coking Resistance on Catalyst-Modified Anodes for Solid Oxide Fuel Cells. Chemistry of Materials, 2015, 27, 822-828.	3.2	54
44	High conductive and long-term phase stable anode materials for SOFCs: A 2 FeMoO 6 (AÂ= Ca, Sr, Ba). Journal of Power Sources, 2017, 359, 384-390.	4.0	51
45	Cation Deficiency Tuning of LaCoO ₃ Perovskite as Bifunctional Oxygen Electrocatalyst. ChemCatChem, 2020, 12, 2768-2775.	1.8	51
46	High-performance Ni–BaZr0.1Ce0.7Y0.1Yb0.1O3â^îŕ (BZCYYb) membranes for hydrogen separation. International Journal of Hydrogen Energy, 2013, 38, 14743-14749.	3.8	48
47	Wearable high-dielectric-constant polymers with core–shell liquid metal inclusions for biomechanical energy harvesting and a self-powered user interface. Journal of Materials Chemistry A, 2019, 7, 7109-7117.	5.2	48
48	Understanding of A-site deficiency in layered perovskites: promotion of dual reaction kinetics for water oxidation and oxygen reduction in protonic ceramic electrochemical cells. Journal of Materials Chemistry A, 2020, 8, 14600-14608.	5.2	48
49	High performance electrolyte-coated anodes for low-temperature solid oxide fuel cells: Model and Experiments. Journal of Power Sources, 2008, 179, 177-185.	4.0	47
50	Tri-Doped BaCeO ₃ –BaZrO ₃ as a Chemically Stable Electrolyte with High Proton-Conductivity for Intermediate Temperature Solid Oxide Electrolysis Cells (SOECs). ACS Applied Materials & Interfaces, 2020, 12, 38275-38284.	4.0	47
51	Cation deficiency design: A simple and efficient strategy for promoting oxygen evolution reaction activity of perovskite electrocatalyst. Electrochimica Acta, 2018, 259, 1004-1010.	2.6	44
52	Effect of impregnation phases on the performance of Ni-based anodes for low temperature solid oxide fuel cells. Journal of Power Sources, 2011, 196, 8561-8567.	4.0	42
53	Promotion on electrochemical performance of a cation deficient SrCo 0.7 Nb 0.1 Fe 0.2 O 3â ^{~1} δ perovskite cathode for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2017, 354, 26-33.	4.0	42
54	High-performance, ceria-based solid oxide fuel cells fabricated at low temperatures. Journal of Power Sources, 2013, 241, 454-459.	4.0	41

#	Article	IF	CITATIONS
55	An octane-fueled low temperature solid oxide fuel cell with Ru-free anodes. Electrochemistry Communications, 2008, 10, 1295-1298.	2.3	40
56	Electrical properties of samaria-doped ceria electrolytes from highly active powders. Electrochimica Acta, 2010, 55, 4529-4535.	2.6	39
57	Development of La0.6Sr0.4Co0.2Fe0.8O3â^'δ cathode with an improved stability via La0.8Sr0.2MnO3-film impregnation. International Journal of Hydrogen Energy, 2013, 38, 5375-5382.	3.8	39
58	Infiltrated Pr2NiO4 as promising bi-electrode for symmetrical solid oxide fuel cells. International Journal of Hydrogen Energy, 2018, 43, 8953-8961.	3.8	38
59	Advances in electrocatalytic ammonia synthesis under mild conditions. Progress in Energy and Combustion Science, 2020, 81, 100860.	15.8	38
60	Highâ€Performance Piezoâ€Electrocatalytic Sensing of Ascorbic Acid with Nanostructured Wurtzite Zinc Oxide. Advanced Materials, 2021, 33, e2105697.	11.1	38
61	Sm0.2(Ce1â^'xTix)0.8O1.9 modified Ni–yttria-stabilized zirconia anode for direct methane fuel cell. Journal of Power Sources, 2011, 196, 4987-4991.	4.0	37
62	A mixed-conducting BaPr0.8In0.2O3â^î cathode for proton-conducting solid oxide fuel cells. Electrochemistry Communications, 2013, 27, 19-21.	2.3	36
63	An operando surface enhanced Raman spectroscopy (SERS) study of carbon deposition on SOFC anodes. Physical Chemistry Chemical Physics, 2015, 17, 21112-21119.	1.3	34
64	H _x MoO _{3â^'y} nanobelts with sea water as electrolyte for high-performance pseudocapacitors and desalination devices. Journal of Materials Chemistry A, 2015, 3, 17217-17223.	5.2	33
65	A mini-review on proton conduction of BaZrO ₃ -based perovskite electrolytes. JPhys Energy, 2021, 3, 032019.	2.3	33
66	Evaluation of La0.4Ba0.6Fe0.8Zn0.2O3â^îl´Â+ÂSm0.2Ce0.8O1.9 as a potential cobalt-free composite cathode for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2015, 275, 808-814.	4.0	32
67	Thin yttria-stabilized zirconia electrolyte and transition layers fabricated by particle suspension spray. Journal of Power Sources, 2007, 164, 567-571.	4.0	31
68	Electrochemical characteristics of samaria-doped ceria infiltrated strontium-doped LaMnO3 cathodes with varied thickness for yttria-stabilized zirconia electrolytes. Journal of Power Sources, 2011, 196, 2551-2557.	4.0	31
69	Kinetics and mechanism of CO2 gasification of coal catalyzed by Na2CO3, FeCO3 and Na2CO3–FeCO3. Journal of the Energy Institute, 2020, 93, 922-933.	2.7	31
70	Operando and Inâ€situ Xâ€ray Spectroscopies of Degradation in La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3â^'<i>δ</i>} Thin Film Cathodes in Fuel Cells. ChemSusChem, 2014, 7, 3078-3087.	3.6	30
71	A high-performance, cobalt-free cathode for intermediate-temperature solid oxide fuel cells with excellent CO2 tolerance. Journal of Power Sources, 2016, 319, 178-184.	4.0	30
72	A Highâ€Performing Direct Carbon Fuel Cell with a 3D Architectured Anode Operated Below 600 °C. Advanced Materials, 2018, 30, 1704745.	11.1	30

#	Article	IF	CITATIONS
73	Hybrid nanomanufacturing of mixed-dimensional manganese oxide/graphene aerogel macroporous hierarchy for ultralight efficient supercapacitor electrodes in self-powered ubiquitous nanosystems. Nano Energy, 2019, 66, 104124.	8.2	30
74	Enhanced ionic conductivity of apatite-type lanthanum silicate electrolyte for IT-SOFCs through copper doping. Journal of Power Sources, 2016, 306, 630-635.	4.0	29
75	Robust three dimensional N-doped graphene supported Pd nanocomposite as efficient electrocatalyst for methanol oxidation in alkaline medium. International Journal of Hydrogen Energy, 2017, 42, 15107-15114.	3.8	28
76	New insight into highly active cathode of proton conducting solid oxide fuel cells by oxygen ionic conductor modification. Journal of Power Sources, 2015, 287, 170-176.	4.0	27
77	High performance Ni–Sm2O3 cermet anodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2009, 187, 400-402.	4.0	26
78	New insights into intermediate-temperature solid oxide fuel cells with oxygen-ion conducting electrolyte act as a catalyst for NO decomposition. Applied Catalysis B: Environmental, 2014, 158-159, 418-425.	10.8	26
79	Ni–LnOx (Ln=La, Ce, Pr, Nd, Sm, Eu, and Gd) cermet anodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2010, 195, 1359-1364.	4.0	24
80	Development of three-layer intermediate temperature solid oxide fuel cells with direct stainless steel based anodes. International Journal of Hydrogen Energy, 2012, 37, 4401-4405.	3.8	24
81	Fabrication and evaluation of stable micro tubular solid oxide fuel cells with BZCY-BZY bi-layer proton conducting electrolytes. International Journal of Hydrogen Energy, 2014, 39, 19087-19092.	3.8	24
82	Efficient modification for enhancing surface activity of Ba0.5Sr0.5Co0.8Fe0.2O3â~'δ oxygen permeation membrane. Journal of Membrane Science, 2015, 477, 7-13.	4.1	24
83	IrO ₂ -incorporated La _{0.8} Sr _{0.2} MnO ₃ as a bifunctional oxygen electrocatalyst with enhanced activities. Inorganic Chemistry Frontiers, 2019, 6, 1029-1039.	3.0	23
84	Engineering the atomic arrangement of bimetallic catalysts for electrochemical CO ₂ reduction. Chemical Communications, 2021, 57, 1839-1854.	2.2	23
85	Electrical and electrocatalytic properties of a La0.8Sr0.2Co0.17Mn0.83O3â^î^ cathode for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2012, 205, 80-85.	4.0	22
86	Discovery of single-atom alloy catalysts for CO2-to-methanol reaction by density functional theory calculations. Catalysis Today, 2022, 388-389, 403-409.	2.2	22
87	Synthesis and electrical conductivity of various melilite-type electrolytes Ln1+xSr1â~'xGa3O7+x/2. Solid State Ionics, 2011, 191, 68-72.	1.3	21
88	Regulation of Cathode Mass and Charge Transfer by Structural 3D Engineering for Protonic Ceramic Fuel Cell at 400°C. Advanced Functional Materials, 2021, 31, 2102907.	7.8	21
89	Carbon Nanotube Supported Amorphous MoS ₂ via Microwave Heating Synthesis for Enhanced Performance of Hydrogen Evolution Reaction. Energy Material Advances, 2021, 2021, . 	4.7	20
90	Approaches for co-sintering metal-supported proton-conducting solid oxide cells with Ba(Zr,Ce,Y,Yb)O3-δelectrolyte. International Journal of Hydrogen Energy, 2019, 44, 13768-13776.	3.8	19

#	Article	IF	CITATIONS
91	Dual Functional Ni ₃ S ₂ @Ni Core–Shell Nanoparticles Decorating Nanoporous Carbon as Cathode Scaffolds for Lithium–Sulfur Battery with Lean Electrolytes. ACS Applied Energy Materials, 2020, 3, 4173-4179.	2.5	19
92	Electrochemically Engineered, Highly Energy-Efficient Conversion of Ethane to Ethylene and Hydrogen below 550 ŰC in a Protonic Ceramic Electrochemical Cell. ACS Catalysis, 2021, 11, 12194-12202.	5.5	17
93	Scalable nanomanufacturing and assembly of chiral-chain piezoelectric tellurium nanowires for wearable self-powered cardiovascular monitoring. Nano Futures, 2019, 3, 011001.	1.0	16
94	Modeling the performance and faradaic efficiency of solid oxide electrolysis cells using doped barium zirconate perovskite electrolytes. International Journal of Hydrogen Energy, 2021, 46, 11511-11522.	3.8	16
95	An Unbalanced Battle in Excellence: Revealing Effect of Ni/Co Occupancy on Water Splitting and Oxygen Reduction Reactions in Tripleâ€Conducting Oxides for Protonic Ceramic Electrochemical Cells. Small, 2022, 18, .	5.2	16
96	Development of High Performance Intermediate Temperature Proton-Conducting Solid Oxide Electrolysis Cells. ECS Transactions, 2017, 80, 167-173.	0.3	15
97	Chemical and structural origin of hole states in yttria-stabilized zirconia. Acta Materialia, 2021, 203, 116487.	3.8	15
98	Enhancing SOFC Electrode Performance Through Surface Modification. ECS Transactions, 2013, 57, 1801-1810.	0.3	14
99	Highly active Sm0.2Ce0.8O1.9 powders of very low apparent density derived from mixed cerium sources. Journal of Power Sources, 2013, 229, 277-284.	4.0	14
100	Dual 3D Ceramic Textile Electrodes: Fast Kinetics for Carbon Oxidation Reaction and Oxygen Reduction Reaction in Direct Carbon Fuel Cells at Reduced Temperatures. Advanced Functional Materials, 2020, 30, 1910096.	7.8	14
101	Low-temperature ethylene production for indirect electrification in chemical production. Cell Reports Physical Science, 2021, 2, 100405.	2.8	14
102	Surface enhanced performance of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes by infiltration Pr-Ni-Mn-O progress. Journal of Alloys and Compounds, 2022, 902, 163337.	2.8	14
103	Composites of Single/Double Perovskites as Cathodes for Solid Oxide Fuel Cells. Energy Technology, 2016, 4, 804-808.	1.8	11
104	Advancement of Proton-Conducting Solid Oxide Fuel Cells and Solid Oxide Electrolysis Cells at Idaho National Laboratory (INL). ECS Transactions, 2019, 91, 1029-1034.	0.3	11
105	The effect of Cr deposition and poisoning on BaZr 0.1 Ce 0.7 Y 0.2 O 3â^î^ proton conducting electrolyte. International Journal of Hydrogen Energy, 2014, 39, 18379-18384.	3.8	10
106	Exploring the structural uniformity and integrity of protonic ceramic thin film electrolyte using wet powder spraying. Journal of Power Sources Advances, 2021, 11, 100067.	2.6	10
107	Spinel oxides as coke-resistant supports for NiO-based oxygen carriers in chemical looping combustion of methane. Catalysis Today, 2023, 424, 112462.	2.2	9
108	Direct conversion of natural gases in solid oxide cells: A mini-review. Electrochemistry Communications, 2021, 128, 107068.	2.3	9

#	Article	IF	CITATIONS
109	Chalkboard 2 - How to Make Clean Hydrogen. Electrochemical Society Interface, 2021, 30, 49-56.	0.3	9
110	Electrical, thermal, and H2O and CO2 poisoning behaviors of PrNi0.5Co0.5O3-δ electrode for intermediate temperature protonic ceramic electrochemical cells. International Journal of Hydrogen Energy, 2022, 47, 21817-21827.	3.8	9
111	Effect of Samaria Doped Ceria Impregnation on the Electrochemical Performance of Strontium Doped Lanthanum Chromium Manganite Anode for Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2017, 164, F916-F922.	1.3	7
112	Evolution of Solid Oxide Fuel Cells via Fast Interfacial Oxygen Crossover. ACS Applied Energy Materials, 2019, 2, 4069-4074.	2.5	7
113	High-performance of CrOx/HZSM-5 catalyst on non-oxidative dehydrogenation of C2H6 to C2H4: Effect of supporting materials and associated mechanism. Fuel Processing Technology, 2022, 233, 107294.	3.7	7
114	Chromium poisoning effect on strontium-doped samarium manganite for solid oxide fuel cell. International Journal of Hydrogen Energy, 2016, 41, 20660-20669.	3.8	5
115	Hydrogen Production: 3D Self-Architectured Steam Electrode Enabled Efficient and Durable Hydrogen Production in a Proton-Conducting Solid Oxide Electrolysis Cell at Temperatures Lower Than 600 ŰC (Adv. Sci. 11/2018). Advanced Science, 2018, 5, 1870070.	5.6	5
116	A High Performance Low Temperature Direct Carbon Fuel Cell. ECS Transactions, 2017, 78, 2519-2526.	0.3	4
117	Development and Fabrication of a New Concept Planarâ€tubular Solid Oxide Fuel Cell (PTâ€SOFC). Fuel Cells, 2011, 11, 451-458.	1.5	3
118	Hydrogen bonding sewing interface. RSC Advances, 2020, 10, 17438-17443.	1.7	3
119	Enhanced density of sol–gel derived La0.8S0.2MnO3 thin film with an electric field assisted deposition. Materials Letters, 2013, 92, 192-194.	1.3	2
120	(Invited) Robust and Active Mixed-Conducting Electrodes for Intermediate-Temperature Fuel Cells. ECS Transactions, 2017, 80, 3-12.	0.3	2
121	Fuel Cells: A Highâ€Performing Direct Carbon Fuel Cell with a 3D Architectured Anode Operated Below 600 °C (Adv. Mater. 4/2018). Advanced Materials, 2018, 30, 1870022.	11.1	2
122	Regulation of Cathode Mass and Charge Transfer by Structural 3D Engineering for Protonic Ceramic Fuel Cell at 400°C (Adv. Funct. Mater. 33/2021). Advanced Functional Materials, 2021, 31, 2170244.	7.8	2
123	A Proton Conducting Solid Oxide Electrolysis Cell with Tri-Doping Electrolyte and Three-Phase Conducting Steam Electrode for Sustainable Hydrogen Production. ECS Meeting Abstracts, 2019, , .	0.0	1
124	Three-dimensional Analysis of Materials at Multiple Length Scales. Microscopy and Microanalysis, 2020, 26, 1680-1682.	0.2	0
125	Direct Carbon Fuel Cells: Dual 3D Ceramic Textile Electrodes: Fast Kinetics for Carbon Oxidation Reaction and Oxygen Reduction Reaction in Direct Carbon Fuel Cells at Reduced Temperatures (Adv.) Tj ETQq1	1 077.88431	.4 r g BT /Over
126	Idaho National Laboratory's Advanced Design and Manufacturing Initiative. Catalysis Today, 2021, 363, 67-72.	2.2	0

#	Article	IF	CITATIONS
127	Composition Optimization of Triple Conducting PrNixCo1-XO3-δOxygen Electrodes for Protonic Ceramic Electrochemical Cells. ECS Meeting Abstracts, 2021, MA2021-01, 1145-1145.	0.0	0
128	Natural Gas Conversion Using Proton-Conducting Ceramic Membrane Reactor. ECS Meeting Abstracts, 2021, MA2021-01, 1149-1149.	0.0	0
129	Rational Identification of Doping Strategy to Achieve a Highly Conductive and Reliable Protonic Electrolyte for Electrochemical Cells. ECS Meeting Abstracts, 2021, MA2021-01, 1155-1155.	0.0	0
130	C2H6 Dehydrogenation and Electrical Power Production in a Protonic Conducting Fuel Cell with in-Situ Exsolved Metal Nanoparticle Catalyst. ECS Meeting Abstracts, 2021, MA2021-01, 1161-1161.	0.0	0
131	Tunable Heterostructured Nanomaterials for Efficient Hydrogenation Reactions at Intermediate Temperatures. ECS Meeting Abstracts, 2021, MA2021-01, 1258-1258.	0.0	0
132	High Proton Conductivity in Sc-Doped BaZrO3: Effect of Dopant on Hydration Thermodynamics and Transport Behavior. ECS Meeting Abstracts, 2021, MA2021-01, 1146-1146.	0.0	0
133	Research Advancement of Energy to Molecules and Materials (E2M2) at Idaho National Laboratory. ECS Meeting Abstracts, 2021, MA2021-01, 1144-1144.	0.0	Ο
134	A High Performance Low Temperature Direct Carbon Fuel Cell. ECS Meeting Abstracts, 2017, , .	0.0	0
135	Development of High Performance Intermediate Temperature Proton-Conducting Solid Oxide Electrolysis Cells. ECS Meeting Abstracts, 2017, , .	0.0	Ο
136	(Invited) Robust and Active Mixed-Conducting Electrodes for Intermediate-Temperature Fuel Cells. ECS Meeting Abstracts, 2017, , .	0.0	0
137	(Invited) a Strategic Approach for Co-Production of Ethylene and Hydrogen Via Electrochemical Non-Oxidative Deprotonation of Ethane. ECS Meeting Abstracts, 2018, , .	0.0	0
138	A New Triple-Conducting Material for Efficient Hydrogen Production in Proton Conducting Solid Oxide Electrolysis Cells. ECS Meeting Abstracts, 2018, , .	0.0	0
139	Co-Production of Ethylene and Hydrogen Via Non-Oxidative Dehydrogenation of Ethane Below 400oc. ECS Meeting Abstracts, 2018, , .	0.0	0
140	(Invited) Research Progress of High Temperature Electrolysis (HTE) Supernode. ECS Meeting Abstracts, 2019, , .	0.0	0
141	Electrochemical CO2 conversion into High Value Added Chemicals Using Solid Oxide Proton Conducting Membrane Reactors. ECS Meeting Abstracts, 2019, , .	0.0	0
142	Electrochemistry Enhanced Activation of Ethane for Co-Production of Ethylene and Hydrogen with Low-Thermal-Budget and Low-CO2-Emission. ECS Meeting Abstracts, 2019, , .	0.0	0
143	(Invited) Fast Electrode Kinetics Enabled By New Triple-Conducting Oxides for Both Hydrogen Production and Power Generation Using Reversible Solid Oxide Proton-Conducting Electrochemical Cells. ECS Meeting Abstracts, 2019, , .	0.0	0
144	High-Performance Protonic Ceramic Electrochemical Cells for Hydrogen Production and Electricity Generation at Intermediate Temperatures. ECS Meeting Abstracts, 2020, MA2020-01, 1486-1486.	0.0	0

#	Article	IF	CITATIONS
145	Manufacture and Electrochemical Test of Short Stacks Based on Protonic Ceramic Electrochemical Cell at Idaho National Laboratory. ECS Meeting Abstracts, 2020, MA2020-01, 1510-1510.	0.0	0
146	(Invited) Elevated Temperature Electrosynthesis of Fuels and Chemicals Using Carbon Dioxide and Nitrogen through Protonic Ceramic Electrochemical Cells (PCECs). ECS Meeting Abstracts, 2020, MA2020-01, 1459-1459.	0.0	0
147	Stability of Proton-Conducting Solid Oxide Electrolyzers for Hydrogen Production and Energy Storage. ECS Meeting Abstracts, 2020, MA2020-01, 1487-1487.	0.0	0
148	Electronic Transport within Proton-Conducting Ceramics and Its Effect on Faradaic Efficiency of High-Temperature Water Electrolysis for Hydrogen Production. ECS Meeting Abstracts, 2020, MA2020-01, 1492-1492.	0.0	0
149	Understanding Degradation Onset in High Temperature Electrolysis Cells with Transmission X-Ray Microscopy. ECS Meeting Abstracts, 2021, MA2021-02, 1342-1342.	0.0	0
150	Highly Efficient and Durable Materials for Protonic Ceramic Electrochemical Cells Operated at 400~600 ^{â—<} c. ECS Meeting Abstracts, 2020, MA2020-02, 2588-2588.	0.0	0
151	Comparative Investigation of Electronic Leakage in Proton-Conducting Ceramics for High-Temperature Water Electrolysis. ECS Meeting Abstracts, 2020, MA2020-02, 2591-2591.	0.0	0
152	Improved Mechanical Reliability for Protonic Ceramic Electrochemical Cell Using Alumina Dispersed Electrode Support. ECS Meeting Abstracts, 2020, MA2020-02, 2589-2589.	0.0	0
153	Strongly Coupled Metal/Oxide Heterointerface for Efficient Ammonia Electrosynthesis at Mild Condition. ECS Meeting Abstracts, 2020, MA2020-02, 2702-2702.	0.0	0
154	Direct Conversion of Natural Gases to Aromatics in Solid-Oxide Membrane Reactor. ECS Meeting Abstracts, 2021, MA2021-02, 1340-1340.	0.0	0
155	Energy to Molecules and Materials (E2M2): Intermediate Temperature Electrosynthesis of Intermediates, Fuels and Chemicals Using Protonic Ceramic Electrochemical Cells (PCECs). ECS Meeting Abstracts, 2020, MA2020-02, 2590-2590.	0.0	0
156	Theory Driven Catalysts Design for Hydrogenation Reactions in Solid Oxide Electrolyzer. ECS Meeting Abstracts, 2020, MA2020-02, 2507-2507.	0.0	0
157	(Invited) From Nano-Bulk Interplayed Composites to Industrial Standard Devices: A Length Scale Evolution of Heterogeneous Functional Materials for Solid Oxide Electrochemical Cells at Intermediate Temperatures. ECS Meeting Abstracts, 2022, MA2022-01, 1675-1675.	0.0	0
158	(Invited) Advanced Electrode and Electrolyte Materials for Proton Conducting Solid Oxide Electrolysis Cells. ECS Meeting Abstracts, 2022, MA2022-01, 1735-1735.	0.0	0