Jinkee Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5708117/publications.pdf

Version: 2024-02-01

137 papers 4,116 citations

32 h-index 56 g-index

144 all docs

144 docs citations

144 times ranked 5636 citing authors

#	Article	IF	Citations
1	Understanding the hazards induced by microplastics in different environmental conditions. Journal of Hazardous Materials, 2022, 424, 127630.	6.5	23
2	Multivalent network modifier upregulates bioactivity of multispecies biofilm-resistant polyalkenoate cement. Bioactive Materials, 2022, 14, 219-233.	8.6	7
3	Blocking chemical warfare agent simulants by graphene oxide/polymer multilayer membrane based on hydrogen bonding and size sieving effect. Journal of Hazardous Materials, 2022, 427, 127884.	6.5	5
4	A Nanocoating Coâ€Localizing Nitric Oxide and Growth Factor onto Individual Endothelial Cells Reveals Synergistic Effects on Angiogenesis. Advanced Healthcare Materials, 2022, 11, e2102095.	3.9	7
5	Polysilsesquioxane with potent resistance to intraoral stress: Functional coating material for the advanced dental materials. Applied Surface Science, 2022, 578, 152085.	3.1	5
6	Stress Dissipation Encoded Silk Fibroin Electrode for the Athleteâ€Beneficial Silk Bioelectronics. Advanced Science, 2022, 9, e2105420.	5.6	11
7	Lightweight mobile stick-type water-based triboelectric nanogenerator with amplified current for portable safety devices. Science and Technology of Advanced Materials, 2022, 23, 161-168.	2.8	9
8	AC/DC Convertible Pillarâ€Type Triboelectric Nanogenerator with Output Current Amplified by the Design of the Moving Electrode. Advanced Energy Materials, 2022, 12, .	10.2	10
9	Flexible, Elastic, and Superhydrophobic/Superoleophilic Adhesive for Reusable and Durable Water/Oil Separation Coating. ACS Applied Materials & Samp; Interfaces, 2022, 14, 10825-10835.	4.0	31
10	Bioactive hydrogel microcapsules for guiding stem cell fate decisions by release and reloading of growth factors. Bioactive Materials, 2022, 15, 1-14.	8.6	3
11	Generation of zinc ion-rich surface via in situ growth of ZIF-8 particle: Microorganism immobilization onto fabric surface for prohibit hospital-acquired infection. Chemical Engineering Journal, 2022, 446, 137054.	6.6	9
12	Inhalationâ€Driven Vertical Flutter Triboelectric Nanogenerator with Amplified Output as a Gasâ€Maskâ€Integrated Selfâ€Powered Multifunctional System. Advanced Energy Materials, 2022, 12, .	10.2	9
13	Coating Bioactive Microcapsules with Tannic Acid Enhances the Phenotype of the Encapsulated Pluripotent Stem Cells. ACS Applied Materials & Encapsulated 27274-27286.	4.0	2
14	In vitro toxicity from a physical perspective of polyethylene microplastics based on statistical curvature change analysis. Science of the Total Environment, 2021, 752, 142242.	3.9	82
15	Water behavior based electric generation via charge separation. Nano Energy, 2021, 82, 105687.	8.2	22
16	Structured nanofilms comprising Laponite \hat{A}^{\otimes} and bone extracellular matrix for osteogenic differentiation of skeletal progenitor cells. Materials Science and Engineering C, 2021, 118, 111440.	3.8	21
17	Triangulated Cylinder Origami-Based Piezoelectric/Triboelectric Hybrid Generator to Harvest Coupled Axial and Rotational Motion. Research, 2021, 2021, 7248579.	2.8	25
18	Acceleration of Nitric Oxide Release in Multilayer Nanofilms through Cu(II) Ion Intercalation for Antibacterial Applications. Biomacromolecules, 2021, 22, 1312-1322.	2.6	17

#	Article	IF	CITATIONS
19	α-Tocopherol-loaded reactive oxygen species-scavenging ferrocene nanocapsules with high antioxidant efficacy for wound healing. International Journal of Pharmaceutics, 2021, 596, 120205.	2.6	17
20	Reverse Actuation of Polyelectrolyte Effect for <i>In Vivo</i> Antifouling. ACS Nano, 2021, 15, 6811-6828.	7.3	30
21	Functionalized Polyurethaneâ€Coated Fabric with High Breathability, Durability, Reusability, and Protection Ability. Advanced Functional Materials, 2021, 31, 2101511.	7.8	34
22	Functional ferrocene polymer multilayer coatings for implantable medical devices: Biocompatible, antifouling, and ROS-sensitive controlled release of therapeutic drugs. Acta Biomaterialia, 2021, 125, 242-252.	4.1	15
23	Investigation of the Structural Mechanism and Film Growth on Cytoprotective Type I Collagen-Based Nanocoating of Individual Cellular Surfaces. Langmuir, 2021, 37, 4587-4598.	1.6	2
24	Nano-structure of vitronectin/heparin on cell membrane for stimulating single cell in iPSC-derived embryoid body. IScience, 2021, 24, 102297.	1.9	2
25	A portable device for water-sloshing-based electricity generation based on charge separation and accumulation. IScience, 2021, 24, 102442.	1.9	7
26	Programmed BMP-2 release from biphasic calcium phosphates for optimal bone regeneration. Biomaterials, 2021, 272, 120785.	5.7	20
27	Nonpolar Liquid Lubricant Submerged Triboelectric Nanogenerator for Current Amplification via Direct Electron Flow. Advanced Energy Materials, 2021, 11, 2100936.	10.2	33
28	Novel enzymatic cross-linking \hat{s} "based hydrogel nanofilm caging system on pancreatic \hat{l}^2 cell spheroid for long-term blood glucose regulation. Science Advances, 2021, 7, .	4.7	28
29	Chitosan/Cellulose-Based Porous Nanofilm Delivering C-Phycocyanin: A Novel Platform for the Production of Cost-Effective Cultured Meat. ACS Applied Materials & Samp; Interfaces, 2021, 13, 32193-32204.	4.0	24
30	2D graphene oxide particles induce unwanted loss in pluripotency and trigger early differentiation in human pluripotent stem cells. Journal of Hazardous Materials, 2021, 414, 125472.	6.5	4
31	Body-mediated energy loss conversion for personalized cell vitalization. Nano Energy, 2021, 87, 106209.	8.2	8
32	Dielectric liquid-based self-operating switch triboelectric nanogenerator for current amplification via regulating air breakdown. Nano Energy, 2021, 88, 106292.	8.2	23
33	Gelatin MAGIC powder as nutrient-delivering 3D spacer for growing cell sheets into cost-effective cultured meat. Biomaterials, 2021, 278, 121155.	5.7	30
34	Co-existing "spear-and-shield―air filter: Anchoring proteinaceous pathogen and self-sterilized nanocoating for combating viral pandemic. Chemical Engineering Journal, 2021, 426, 130763.	6.6	15
35	Unraveling the Structured Solvation Shell of Zwitterion Nanoparticles for Controlled Release of Nitric Oxide. ACS Applied Materials & Samp; Interfaces, 2021, 13, 54363-54374.	4.0	6
36	Effects of Nonporous Silica Nanoparticles on Human Trabecular Meshwork Cells. Journal of Glaucoma, 2021, 30, 195-202.	0.8	2

#	Article	IF	Citations
37	Mussel-Inspired Multiloop Polyethers for Antifouling Surfaces. Biomacromolecules, 2021, 22, 5173-5184.	2.6	12
38	Transmission and regulation of biochemical stimulus via a nanoshell directly adsorbed on the cell membrane to enhance chondrogenic differentiation of mesenchymal stem cell. Biotechnology and Bioengineering, 2020, 117, 184-193.	1.7	5
39	Sustained Nitric Oxide-Providing Small Molecule and Precise Release Behavior Study for Glaucoma Treatment. Molecular Pharmaceutics, 2020, 17, 656-665.	2.3	8
40	Efficient Drug Delivery Carrier Surface without Unwanted Adsorption Using Sulfobetaine Zwitterion. Advanced Materials Interfaces, 2020, 7, 2001433.	1.9	11
41	Facile Synthesis of Poly(ethylene oxide)-Based Self-Healable Dynamic Triblock Copolymer Hydrogels. Biomacromolecules, 2020, 21, 4913-4922.	2.6	15
42	Nanocrystals Continuously Releasing Nitric Oxide: Promoting Cell Migration and Increasing Cell Survival against Oxidative Stress. Chemistry of Materials, 2020, 32, 9787-9797.	3.2	6
43	Controlled Nitric Oxide Release Using Poly(lactic-co-glycolic acid) Nanoparticles for Anti-Inflammatory Effects. Biomacromolecules, 2020, 21, 4972-4979.	2.6	24
44	Spray-assisted layer-by-layer self-assembly of tertiary-amine-stabilized gold nanoparticles and graphene oxide for efficient CO2 capture. Journal of Membrane Science, 2020, 601, 117905.	4.1	23
45	Oneâ€Step Fabrication of Universal Slippery Lubricated Surfaces. Advanced Materials Interfaces, 2020, 7, 2000305.	1.9	26
46	Surface Pattern Analysis of Microplastics and Their Impact on Human-Derived Cells. ACS Applied Polymer Materials, 2020, 2, 4541-4550.	2.0	35
47	Methods and Applications of Biomolecular Surface Coatings on Individual Cells. ACS Applied Bio Materials, 2020, 3, 6556-6570.	2.3	5
48	Controlling physicochemical properties of graphene oxide for efficient cellular delivery. Journal of Industrial and Engineering Chemistry, 2020, 88, 312-318.	2.9	10
49	Studies on the Drug Loading and Release Profiles of Degradable Chitosan-Based Multilayer Films for Anticancer Treatment. Cancers, 2020, 12, 593.	1.7	26
50	Ladder-like polysilsesquioxanes with antibacterial chains and durable siloxane networks. Chemical Engineering Journal, 2020, 393, 124686.	6.6	18
51	In vitro chemical and physical toxicities of polystyrene microfragments in human-derived cells. Journal of Hazardous Materials, 2020, 400, 123308.	6.5	98
52	Tris(2-carboxyethyl)phosphine-Mediated Nanometric Extracellular Matrix-Coating Method of Mesenchymal Stem Cells. ACS Biomaterials Science and Engineering, 2020, 6, 813-821.	2.6	5
53	Organosilicate compound filler to increase the mechanical strength of superhydrophilic layer-by-layer assembled film. Journal of Industrial and Engineering Chemistry, 2020, 84, 332-339.	2.9	6
54	Quantitative Interpretation of Hydration Dynamics Enabled the Fabrication of a Zwitterionic Antifouling Surface. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7951-7965.	4.0	38

#	Article	IF	CITATIONS
55	Mussel-Inspired Copolyether Loop with Superior Antifouling Behavior. Macromolecules, 2020, 53, 3551-3562.	2.2	47
56	Potential toxicity of polystyrene microplastic particles. Scientific Reports, 2020, 10, 7391.	1.6	303
57	Nanoclay–Polyamine Composite Hydrogel for Topical Delivery of Nitric Oxide Gas via Innate Gelation Characteristics of Laponite. Biomacromolecules, 2020, 21, 2096-2103.	2.6	22
58	Tuning the Structural Integrity and Mechanical Properties of Globular Protein Vesicles by Blending Crosslinkable and NonCrosslinkable Building Blocks. Biomacromolecules, 2020, 21, 4336-4344.	2.6	7
59	Construction of nano-scale cellular environments by coating a multilayer nanofilm on the surface of human induced pluripotent stem cells. Nanoscale, 2019, 11, 13541-13551.	2.8	6
60	Nitric Oxide Delivery Using Biocompatible Perfluorocarbon Microemulsion for Antibacterial Effect. ACS Biomaterials Science and Engineering, 2019, 5, 1378-1383.	2.6	18
61	Developing regulatory property of gelatin-tannic acid multilayer films for coating-based nitric oxide gas delivery system. Scientific Reports, 2019, 9, 8308.	1.6	24
62	An assessment of the toxicity of polypropylene microplastics in human derived cells. Science of the Total Environment, 2019, 684, 657-669.	3.9	359
63	Facile synthesis of polysilsesquioxane toward durable superhydrophilic/superhydrophobic coatings for medical devices. Journal of Industrial and Engineering Chemistry, 2019, 77, 97-104.	2.9	17
64	Recent Advances in Robust Superwettable Membranes for Oil–Water Separation. Advanced Materials Interfaces, 2019, 6, 1900126.	1.9	107
65	Assembly of graphene oxide multilayer film for stable and sustained release of nitric oxide gas. Applied Surface Science, 2019, 486, 452-459.	3.1	19
66	Facile Surface Modification of Polyethylene Film via Spray-Assisted Layer-by-Layer Self-Assembly of Graphene Oxide for Oxygen Barrier Properties. Scientific Reports, 2019, 9, 2754.	1.6	36
67	Frontispiece: Liquidâ€Repellent Metal Oxide Photocatalysts. Chemistry - A European Journal, 2019, 25, .	1.7	O
68	Mechanically durable superhydrophobic PDMS-candle soot composite coatings with high biocompatibility. Journal of Industrial and Engineering Chemistry, 2019, 74, 79-85.	2.9	38
69	Self-assembled DNA hollow spheres from microsponges. Biofabrication, 2019, 11, 025016.	3.7	3
70	Artificial cellular nano-environment composed of collagen-based nanofilm promotes osteogenic differentiation of mesenchymal stem cells. Acta Biomaterialia, 2019, 86, 247-256.	4.1	26
71	Sustained release of therapeutic proteins from multilayers adsorbed on the sidewalls of porous membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562, 296-303.	2.3	6
72	Liquidâ€Repellent Metal Oxide Photocatalysts. Chemistry - A European Journal, 2019, 25, 4535-4542.	1.7	8

#	Article	IF	CITATIONS
73	Control of gas permeability by transforming the molecular structure of silk fibroin in multilayered nanocoatings for CO2 adsorptive separation. Journal of Membrane Science, 2019, 573, 554-559.	4.1	11
74	Vascular Endothelial Growth Factor Incorporated Multilayer Film Induces Preangiogenesis in Endothelial Cells. ACS Biomaterials Science and Engineering, 2018, 4, 1833-1842.	2.6	8
75	Nanostructured Polymer Thin Films Fabricated with Brush-based Layer-by-Layer Self-assembly for Site-selective Construction and Drug release. Scientific Reports, 2018, 8, 3365.	1.6	37
76	Structure of a Multilayer Nanofilm To Increase the Encapsulation Efficiency of Basic Fibroblast Growth Factor. Molecular Pharmaceutics, 2018, 15, 1277-1283.	2.3	3
77	General and Facile Coating of Single Cells via Mild Reduction. Journal of the American Chemical Society, 2018, 140, 1199-1202.	6.6	60
78	A Polysaccharide-Based Antibacterial Coating with Improved Durability for Clear Overlay Appliances. ACS Applied Materials & Durability for Clear Overlay Appliances.	4.0	47
79	Preparation of multifunctional micelles from two different amphiphilic block copolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537, 566-571.	2.3	2
80	Structural heterogeneity in polymeric nitric oxide donor nanoblended coatings for controlled release behaviors. RSC Advances, 2018, 8, 38792-38800.	1.7	17
81	Prolonged Release Period of Nitric Oxide Gas for Treatment of Bacterial Keratitis by Amine-Rich Polymer Decoration of Nanoparticles. Chemistry of Materials, 2018, 30, 8528-8537.	3.2	44
82	Layer-by-layer assembled polymeric thin films as prospective drug delivery carriers: design and applications. Biomaterials Research, 2018, 22, 29.	3.2	78
83	Controllable drug release from nano-layered hollow carrier by non-human enzyme. Nanoscale, 2018, 10, 18228-18237.	2.8	22
84	Polysaccharide-based superhydrophilic coatings with antibacterial and anti-inflammatory agent-delivering capabilities for ophthalmic applications. Journal of Industrial and Engineering Chemistry, 2018, 68, 229-237.	2.9	33
85	Spontaneous Biomacromolecule Absorption and Long-Term Release by Graphene Oxide. ACS Omega, 2018, 3, 5903-5909.	1.6	14
86	Effect of Nitric Oxide on <i>Acanthamoeba castellanii</i> ., 2018, 59, 3239.		4
87	In Vitro Osteogenic Differentiation and Antibacterial Potentials of Chalcone Derivatives. Molecular Pharmaceutics, 2018, 15, 3197-3204.	2.3	12
88	Cobweb-inspired DNA-based membranes for multicomponent pollutant-oil-water emulsions separation. Chemical Engineering Journal, 2018, 348, 870-876.	6.6	11
89	Synthesis and Characterization of Functional Nanofilm-Coated Live Immune Cells. ACS Applied Materials & Discrete Synthesis & ACS Applied Materials & Discrete Synthesis & Discret	4.0	17
90	Multilayered Controlled Drug Release Silk Fibroin Nanofilm by Manipulating Secondary Structure. Biomacromolecules, 2018, 19, 3096-3103.	2.6	44

#	Article	IF	Citations
91	Cytoprotective Self-assembled RGD Peptide Nanofilms for Surface Modification of Viable Mesenchymal Stem Cells. Chemistry of Materials, 2017, 29, 2055-2065.	3.2	51
92	Cobweb-Inspired Superhydrophobic Multiscaled Gating Membrane with Embedded Network Structure for Robust Water-in-Oil Emulsion Separation. ACS Sustainable Chemistry and Engineering, 2017, 5, 3448-3455.	3.2	55
93	Inkjet Printing-Based Patchable Multilayered Biomolecule-Containing Nanofilms for Biomedical Applications. ACS Biomaterials Science and Engineering, 2017, 3, 870-874.	2.6	11
94	Multilayer Nanofilms via Inkjet Printing for Stabilizing Growth Factor and Designing Desired Cell Developments. Advanced Healthcare Materials, 2017, 6, 1700216.	3.9	8
95	Reversible Cell Layering for Heterogeneous Cell Assembly Mediated by Ionic Cross-Linking of Chitosan and a Functionalized Cell Surface Membrane. Chemistry of Materials, 2017, 29, 5294-5305.	3.2	7
96	Multifunctional Collagen and Hyaluronic Acid Multilayer Films on Live Mesenchymal Stem Cells. ACS Applied Materials & Emp; Interfaces, 2017, 9, 12264-12271.	4.0	36
97	Highly Permeable Graphene Oxide/Polyelectrolytes Hybrid Thin Films for Enhanced CO2/N2 Separation Performance. Scientific Reports, 2017, 7, 456.	1.6	36
98	Drug Loading and Release Behavior Depending on the Induced Porosity of Chitosan/Cellulose Multilayer Nanofilms. Molecular Pharmaceutics, 2017, 14, 3322-3330.	2.3	50
99	In vitro blood cell viability profiling of polymers used in molecular assembly. Scientific Reports, 2017, 7, 9481.	1.6	76
100	CO2 bubble assisted layer-by-layer self-assembly of graphene oxide multilayer film. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533, 76-80.	2.3	11
101	An Evaluation of the in vivo Safety of Nonporous Silica Nanoparticles: Ocular Topical Administration versus Oral Administration. Scientific Reports, 2017, 7, 8238.	1.6	32
102	Multicomponent High-throughput Drug Screening via Inkjet Printing to Verify the Effect of Immunosuppressive Drugs on Immune T Lymphocytes. Scientific Reports, 2017, 7, 6318.	1.6	10
103	Inkjet Printing Based Layerâ€byâ€Layer Assembly Capable of Composite Patterning of Multilayered Nanofilms. Macromolecular Materials and Engineering, 2017, 302, 1700332.	1.7	5
104	Safety of Nonporous Silica Nanoparticles in Human Corneal Endothelial Cells. Scientific Reports, 2017, 7, 14566.	1.6	25
105	Efficient Encapsulation and Sustained Release of Basic Fibroblast Growth Factor in Nanofilm: Extension of the Feeding Cycle of Human Induced Pluripotent Stem Cell Culture. ACS Applied Materials & Amp; Interfaces, 2017, 9, 25087-25097.	4.0	23
106	Surface Engineering for Mechanical Enhancement of Cell Sheet by Nano-Coatings. Scientific Reports, 2017, 7, 4464.	1.6	13
107	Superhydrophilic coatings with intricate nanostructure based on biotic materials for antifogging and antibiofouling applications. Chemical Engineering Journal, 2017, 309, 463-470.	6.6	72
108	The Effects of Nonporous Silica Nanoparticles on Cultured Human Keratocytes., 2017, 58, 362.		16

#	Article	IF	Citations
109	Sensitive detection of copper ions via ion-responsive fluorescence quenching of engineered porous silicon nanoparticles. Scientific Reports, 2016, 6, 35565.	1.6	22
110	Transparent superwetting nanofilms with enhanced durability at model physiological condition. Scientific Reports, 2016, 6, 19178.	1.6	16
111	Robust superhydrophobic carbon nanofiber network inlay-gated mesh for water-in-oil emulsion separation with high flux. Journal of Materials Chemistry A, 2016, 4, 17970-17980.	5.2	82
112	Effects of CO2 bubbles on layer-by-layer assembled hybrid thin film. Chemical Engineering Journal, 2016, 303, 433-438.	6.6	10
113	Electronic Activation of a DNA Nanodevice Using a Multilayer Nanofilm. Small, 2016, 12, 5572-5578.	5.2	28
114	The Effect of Silica Nanoparticles on Human Corneal Epithelial Cells. Scientific Reports, 2016, 6, 37762.	1.6	56
115	Effect of pH on the structure and drug release profiles of layer-by-layer assembled films containing polyelectrolyte, micelles, and graphene oxide. Scientific Reports, 2016, 6, 24158.	1.6	49
116	Durable Urushiol-Based Nanofilm with Water Repellency for Clear Overlay Appliances in Dentistry. ACS Biomaterials Science and Engineering, 2016, 2, 344-348.	2.6	27
117	Durable superhydrophilic coatings formed for anti-biofouling and oil–water separation. Journal of Membrane Science, 2016, 506, 22-30.	4.1	71
118	Organosilicate based superhydrophilic nanofilm with enhanced durability for dentistry application. Journal of Industrial and Engineering Chemistry, 2016, 36, 30-34.	2.9	12
119	Antibacterial nanofilm coatings based on organosilicate and nanoparticles. Reactive and Functional Polymers, 2016, 102, 27-32.	2.0	16
120	Nanoporous multilayer films for controlled antigen protein release. Journal of Industrial and Engineering Chemistry, 2016, 33, 221-225.	2.9	11
121	Multilayered Graphene Nano-Film for Controlled Protein Delivery by Desired Electro-Stimuli. Scientific Reports, 2015, 5, 17631.	1.6	34
122	Influence of electron-donating and accepting functionalization of fullerene-based photosensitizers on the charge-generation efficiency of polymer composites. Journal of the Korean Physical Society, 2015, 67, 1998-2002.	0.3	2
123	Controlled surface functionality of magnetic nanoparticles by layer-by-layer assembled nano-films. Nanoscale, 2015, 7, 6703-6711.	2.8	23
124	Nano-film modification of collagen hydrogels for controlled growth factor release. Chemical Engineering Science, 2015, 137, 626-630.	1.9	11
125	Insulin particles as building blocks for controlled insulin release multilayer nano-films. Materials Science and Engineering C, 2015, 54, 239-244.	3.8	11
126	Intrinsic Hydrophobic Cairnlike Multilayer Films for Antibacterial Effect with Enhanced Durability. ACS Applied Materials & Samp; Interfaces, 2015, 7, 26117-26123.	4.0	31

#	Article	IF	CITATIONS
127	Liquid Crystal Alignment Behaviors of Polystyrene Derivatives Containing Coumarin Moieties. Molecular Crystals and Liquid Crystals, 2014, 605, 103-116.	0.4	3
128	Pore size effect on the formation of polymer nanotubular structures within nanoporous templates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 195-200.	2.3	11
129	Controlled release of an anti-cancer drug from DNA structured nano-films. Scientific Reports, 2014, 4, 4078.	1.6	40
130	Rapid fabrication of thick spray-layer-by-layer carbon nanotube electrodes for high power and energy devices. Energy and Environmental Science, 2013, 6, 888.	15.6	79
131	Graphene Multilayers as Gates for Multi-Week Sequential Release of Proteins from Surfaces. ACS Nano, 2012, 6, 81-88.	7.3	122
132	Multilayer thin-film coatings capable of extended programmable drug release: application to human mesenchymal stem cell differentiation. Drug Delivery and Translational Research, 2012, 2, 375-383.	3.0	18
133	Nanoassembly of Block Copolymer Micelle and Graphene Oxide to Multilayer Coatings. Industrial & Lamp; Engineering Chemistry Research, 2011, 50, 3095-3099.	1.8	15
134	Inherent Charge-Shifting Polyelectrolyte Multilayer Blends: A Facile Route for Tunable Protein Release from Surfaces. Biomacromolecules, 2011, 12, 2975-2981.	2.6	60
135	Nanoporous Graphene Oxide Thin Films from Nanohybrid Multilayers. Journal of Nanoscience and Nanotechnology, 2011, 11, 10116-10122.	0.9	0
136	Carbon Decorative Coatings by Dip-, Spin-, and Spray-Assisted Layer-by-Layer Assembly Deposition. Journal of Nanoscience and Nanotechnology, 2011, 11, 7771-7776.	0.9	12
137	Nanoporous Block Copolymer Micelle/Micelle Multilayer Films with Dual Optical Properties. Journal of the American Chemical Society, 2006, 128, 9935-9942.	6.6	219