MarÃ-a Laura Ramirez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5708074/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trichothecene Genotype Profiling of Wheat Fusarium graminearum Species Complex in Paraguay. Toxins, 2022, 14, 257.	1.5	3
2	<i>Fusarium chaquense</i> , sp. nov, a novel type A trichothecene–producing species from native grasses in a wetland ecosystem in Argentina. Mycologia, 2022, 114, 46-62.	0.8	3
3	Combination of Bacillus velezensis RC218 and Chitosan to Control Fusarium Head Blight on Bread and Durum Wheat under Greenhouse and Field Conditions. Toxins, 2022, 14, 499.	1.5	6
4	Effect of fungicides commonly used for Fusarium head blight management on growth and fumonisin production by Fusarium proliferatum. Revista Argentina De Microbiologia, 2021, 53, 64-74.	0.4	7
5	Chickpea. , 2021, , 342-358.		3
6	Ecophysiology of Fusarium chaquense a Novel Type A Trichothecene Producer Species Isolated from Natural Grasses. Toxins, 2021, 13, 895.	1.5	0
7	Toxigenic fungal species and natural occurrence of mycotoxins in crops harvested in Argentina. Revista Argentina De Microbiologia, 2020, 52, 339-347.	0.4	13
8	Effects of water activity and temperature on fusaric and fusarinolic acid production by Fusarium temperatum. Food Control, 2020, 114, 107263.	2.8	5
9	Fusarium Species Infection in Wheat: Impact on Quality and Mycotoxin Accumulation. , 2020, , 421-452.		2
10	Preliminary Study on the Use of Chitosan as an Eco-Friendly Alternative to Control Fusarium Growth and Mycotoxin Production on Maize and Wheat. Pathogens, 2019, 8, 29.	1.2	26
11	Fumonisin occurrence in wheat-based products from Argentina. Food Additives and Contaminants: Part B Surveillance, 2019, 12, 31-37.	1.3	13
12	Fumonisins and fumonisin-producing Fusarium occurrence in wheat and wheat by products: A review. Journal of Cereal Science, 2018, 80, 158-166.	1.8	58
13	Isolation, identification and selection of antagonistic yeast against Alternaria alternata infection and tenuazonic acid production in wine grapes from Argentina. International Journal of Food Microbiology, 2018, 266, 14-20.	2.1	24
14	Influence of water activity and temperature on growth and fumonisin production by Fusarium proliferatum strains on irradiated wheat grains. International Journal of Food Microbiology, 2018, 266, 158-166.	2.1	21
15	Natural occurrence and production of tenuazonic acid in wine grapes in Argentina. Food Science and Nutrition, 2018, 6, 523-531.	1.5	7
16	Biocontrol of Fusarium graminearum sensu stricto, Reduction of Deoxynivalenol Accumulation and Phytohormone Induction by Two Selected Antagonists. Toxins, 2018, 10, 88.	1.5	49
17	MycoKey Round Table Discussions of Future Directions in Research on Chemical Detection Methods, Genetics and Biodiversity of Mycotoxins. Toxins, 2018, 10, 109.	1.5	8
18	Impact of toxigenic fungi and mycotoxins in chickpea: a review. Current Opinion in Food Science, 2018, 23, 32-37.	4.1	24

#	Article	IF	CITATIONS
19	Abiotic conditions leading to FUM gene expression and fumonisin accumulation by Fusarium proliferatum strains grown on a wheat-based substrate. International Journal of Food Microbiology, 2017, 253, 12-19.	2.1	20
20	Presence of Multiple Mycotoxins and Other Fungal Metabolites in Native Grasses from a Wetland Ecosystem in Argentina Intended for Grazing Cattle. Toxins, 2015, 7, 3309-3329.	1.5	45
21	Mycobiota and toxicogenic Alternaria spp. strains in Malbec wine grapes from DOC San Rafael, Mendoza, Argentina. Food Control, 2015, 57, 122-128.	2.8	25
22	Two-dimensional environmental profiles of growth and fumonisin production by Fusarium proliferatum on a wheat-based substrate. International Journal of Food Microbiology, 2014, 182-183, 9-17.	2.1	15
23	Fumonisin occurrence in naturally contaminated wheat grain harvested in Argentina. Food Control, 2014, 37, 56-61.	2.8	39
24	Combined effect of chitosan and water activity on growth and fumonisin production by Fusarium verticillioides and Fusarium proliferatum on maize-based media. International Journal of Food Microbiology, 2014, 185, 51-56.	2.1	10
25	Impact of water potential on growth and germination of Fusarium solani soilborne pathogen of peanut. Brazilian Journal of Microbiology, 2014, 45, 1105-1112.	0.8	13
26	Evaluation of ability of ferulic acid to control growth and fumonisin production of Fusarium verticillioides and Fusarium proliferatum on maize based media. International Journal of Food Microbiology, 2013, 167, 215-220.	2.1	46
27	Ecophysiology of Fusarium graminearum Main Pathogen Associated to Fusarium Head Blight in Latin America. , 2013, , 45-55.		Ο
28	Toxigenic profile and AFLP variability of Alternaria alternata and Alternaria infectoria occurring on wheat. Brazilian Journal of Microbiology, 2013, 44, 447-455.	0.8	27
29	Population Structure of Fusarium graminearum Species Complex Genotypes and Chemotypes in Relation to Trichothecenes Production. , 2013, , 3-13.		0
30	Natural occurrence of alternariol and alternariol monomethyl ether in soya beans. Mycotoxin Research, 2012, 28, 169-174.	1.3	24
31	Occurrence of <i>Fusarium</i> spp. and Fumonisin in Durum Wheat Grains. Journal of Agricultural and Food Chemistry, 2011, 59, 12264-12269.	2.4	42
32	Survey of T-2 and HT-2 toxins in soybean and soy meal from Argentina using immunoaffinity clean-up and high performance liquid chromatography. World Mycotoxin Journal, 2011, 4, 189-197.	0.8	12
33	Trichothecene genotypes and chemotypes in Fusarium graminearum strains isolated from wheat in Argentina. International Journal of Food Microbiology, 2011, 145, 444-448.	2.1	69
34	Influence of water activity and temperature on growth and mycotoxin production by Alternaria alternata on irradiated soya beans. International Journal of Food Microbiology, 2011, 149, 127-132.	2.1	35
35	Osmotic stress adaptation, compatible solutes accumulation and biocontrol efficacy of two potential biocontrol agents on Fusarium head blight in wheat. Biological Control, 2009, 51, 370-376.	1.4	32
36	Fungal and mycotoxin contamination in Bt maize and non-Bt maize grown in Argentina. World Mycotoxin Journal, 2009, 2, 53-60.	0.8	24

#	Article	IF	CITATIONS
37	Fusarium and Fumonisins in Maize in South America. , 2009, , 179-200.		4
38	Population genetic structure ofGibberella zeaeisolated from wheat in Argentina. Food Additives and Contaminants, 2007, 24, 1115-1120.	2.0	58
39	Water activity and temperature effects on growth of Aspergillus niger, A. awamori and A. carbonarius isolated from different substrates in Argentina. International Journal of Food Microbiology, 2007, 119, 314-318.	2.1	44
40	Potential biocontrol agents for Fusarium head blight and deoxynivalenol production in wheat. Crop Protection, 2007, 26, 1702-1710.	1.0	114
41	Vegetative Compatibility and Mycotoxin Chemotypes among Fusarium graminearum (Gibberella zeae) Isolates from Wheat in Argentina. European Journal of Plant Pathology, 2006, 115, 139-148.	0.8	54
42	Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. International Journal of Food Microbiology, 2006, 106, 291-296.	2.1	114
43	Impact of environmental factors and fungicides on growth and deoxinivalenol production by Fusarium graminearum isolates from Argentinian wheat. Crop Protection, 2004, 23, 117-125.	1.0	93
44	Potential use of antioxidants for control of growth and fumonisin production by Fusarium verticillioides and Fusarium proliferatum on whole maize grain. International Journal of Food Microbiology, 2003, 83, 319-324.	2.1	50
45	Efficacy of antioxidant mixtures on growth, fumonisin production and hydrolytic enzyme production by Fusarium verticillioides and F. proliferatum in vitro on maize-based media. Mycological Research, 2002, 106, 1093-1099.	2.5	38
46	In vitro control of growth and fumonisin production by Fusarium verticillioides and F. proliferatum using antioxidants under different water availability and temperature regimes. Journal of Applied Microbiology, 2002, 92, 624-632.	1.4	66
47	Fusarium species (section Liseola) and its mycotoxins in maize harvested in northern Argentina. Food Additives and Contaminants, 2001, 18, 836-843.	2.0	13
48	Fumonisin Production on Irradiated Corn Kernels: Effect of Inoculum Size. Journal of Food Protection, 1999, 62, 814-817.	0.8	16
49	Fumonisin production by, and mating populations of, Fusarium section Liseola isolates from maize in Argentina. Mycological Research, 1998, 102, 141-144.	2.5	30
50	Fusarium and Fumonisin Occurrence in Argentinian Corn at Different Ear Maturity Stages. Journal of Agricultural and Food Chemistry, 1996, 44, 2797-2801.	2.4	131
51	Natural occurrence of fumonisins and their correlation to Fusarium contamination in commercial corn hybrids growth in Argentina. Mycopathologia, 1996, 135, 29-34.	1.3	44